M. Pihlatie, Mikaela Ranta, P. Rahkola, Rafael Åman
{"title":"Zero-Emission Truck Powertrains for Regional and Long-Haul Missions","authors":"M. Pihlatie, Mikaela Ranta, P. Rahkola, Rafael Åman","doi":"10.3390/wevj14090253","DOIUrl":null,"url":null,"abstract":"Zero-emission trucks for regional and long-haul missions are an option for fossil-free freight. The viability of such powertrains and system solutions was studied conceptually in project ESCALATE for trucks with GVW of 40 tonnes and beyond through various battery electric and fuel cell prime mover combinations. The study covers battery and fuel cell power sources with different degrees of battery electric as well as H2 and fuel cell operation. As a design basis, two different missions with a single-charge/H2 refill were analysed. The first mission was the VECTO long-haul profile repeated up to 750 km, whereas the second was a real 520 km on-road mission in Finland. Based on the simulated energy consumption on the driving cycle, on-board energy demand was estimated, and the initial single-charge and H2 refill operational scenarios were produced with five different power source topologies and on-board storage capacities. The traction motors of the tractor were dimensioned so that a secondary mission of GVW up to 76 tonnes on a shorter route or a longer route with more frequent battery recharge and/or H2 refill can be operated. Based on the powertrain and vehicle model, various infrastructure options for charging and H2 refuelling strategies as well as various operative scenarios with indicative total cost of ownership (TCO) were analysed.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj14090253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Zero-emission trucks for regional and long-haul missions are an option for fossil-free freight. The viability of such powertrains and system solutions was studied conceptually in project ESCALATE for trucks with GVW of 40 tonnes and beyond through various battery electric and fuel cell prime mover combinations. The study covers battery and fuel cell power sources with different degrees of battery electric as well as H2 and fuel cell operation. As a design basis, two different missions with a single-charge/H2 refill were analysed. The first mission was the VECTO long-haul profile repeated up to 750 km, whereas the second was a real 520 km on-road mission in Finland. Based on the simulated energy consumption on the driving cycle, on-board energy demand was estimated, and the initial single-charge and H2 refill operational scenarios were produced with five different power source topologies and on-board storage capacities. The traction motors of the tractor were dimensioned so that a secondary mission of GVW up to 76 tonnes on a shorter route or a longer route with more frequent battery recharge and/or H2 refill can be operated. Based on the powertrain and vehicle model, various infrastructure options for charging and H2 refuelling strategies as well as various operative scenarios with indicative total cost of ownership (TCO) were analysed.