Onset of nonlinearity in a two-dimensional thin shear layer

IF 1.3 4区 工程技术 Q3 MECHANICS
S. Izawa, T. Oku, Y. Nishio, Y. Fukunishi
{"title":"Onset of nonlinearity in a two-dimensional thin shear layer","authors":"S. Izawa, T. Oku, Y. Nishio, Y. Fukunishi","doi":"10.1088/1873-7005/ac6419","DOIUrl":null,"url":null,"abstract":"This study numerically investigates an early stage of nonlinear interaction for the better understanding of the onset of nonlinear behaviors. Two-dimensional shear flow is chosen as a canonical flow. When two disturbances of different wavenumbers satisfying no resonance condition are initially given, new components appear one after another while the original disturbances grow. The vorticity budget analysis shows that the beat of the two exciting modes plays an essential role in forming the sum and difference nonlinear components, namely the secondary modes. For the nonlinear interaction mechanism, the high vorticity around the center of the shear layer is locally transported in the transverse direction at specific streamwise sections where the amplitude of the vertical velocity fluctuation becomes relatively larger compared to other sections. The distance between these specific sections corresponds to the wavelength of the beat. The vertically dispersed vorticity will then be convected in the horizontal directions by the mean flow. As a result, several regions of concentrated vorticity appear which eventually develop into vortices. The amplification mechanism is found to be the same for both the primary and secondary modes, though the secondary modes arise from the additional perturbation deriving from the initial perturbation.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1873-7005/ac6419","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study numerically investigates an early stage of nonlinear interaction for the better understanding of the onset of nonlinear behaviors. Two-dimensional shear flow is chosen as a canonical flow. When two disturbances of different wavenumbers satisfying no resonance condition are initially given, new components appear one after another while the original disturbances grow. The vorticity budget analysis shows that the beat of the two exciting modes plays an essential role in forming the sum and difference nonlinear components, namely the secondary modes. For the nonlinear interaction mechanism, the high vorticity around the center of the shear layer is locally transported in the transverse direction at specific streamwise sections where the amplitude of the vertical velocity fluctuation becomes relatively larger compared to other sections. The distance between these specific sections corresponds to the wavelength of the beat. The vertically dispersed vorticity will then be convected in the horizontal directions by the mean flow. As a result, several regions of concentrated vorticity appear which eventually develop into vortices. The amplification mechanism is found to be the same for both the primary and secondary modes, though the secondary modes arise from the additional perturbation deriving from the initial perturbation.
二维薄剪切层非线性的开始
本研究对非线性相互作用的早期阶段进行了数值研究,以更好地理解非线性行为的开始。选择二维剪切流作为规范流。当初始给定两个不满足共振条件的不同波数的扰动时,随着原始扰动的增长,新的分量相继出现。涡度预算分析表明,两种激励模式的拍频在形成和差非线性分量,即二次模式中起着至关重要的作用。对于非线性相互作用机制,剪切层中心周围的高涡度在特定的流向截面上沿横向局部传输,与其他截面相比,垂直速度波动的幅度变得相对较大。这些特定部分之间的距离对应于节拍的波长。然后,垂直分散的涡度将被平均流在水平方向上对流。结果,出现了几个集中涡度的区域,这些区域最终发展成旋涡。发现初级和次级模式的放大机制是相同的,尽管次级模式是由初始扰动产生的附加扰动引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluid Dynamics Research
Fluid Dynamics Research 物理-力学
CiteScore
2.90
自引率
6.70%
发文量
37
审稿时长
5 months
期刊介绍: Fluid Dynamics Research publishes original and creative works in all fields of fluid dynamics. The scope includes theoretical, numerical and experimental studies that contribute to the fundamental understanding and/or application of fluid phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信