Wei Deng, Xue Yin, Wurigumula Bao, Xufeng Zhou, Zhiyuan Hu, Bangyi He, Bao Qiu, Ying Shirley Meng, Zhaoping Liu
{"title":"Quantification of reversible and irreversible lithium in practical lithium-metal batteries","authors":"Wei Deng, Xue Yin, Wurigumula Bao, Xufeng Zhou, Zhiyuan Hu, Bangyi He, Bao Qiu, Ying Shirley Meng, Zhaoping Liu","doi":"10.1038/s41560-022-01120-8","DOIUrl":null,"url":null,"abstract":"Accurate assessment of the reversibility of electrodes is crucial for battery performance evaluations. However, it is challenging to acquire the true reversibility of the Li anode in lithium-metal batteries, mainly because an excessive amount of Li is commonly used. Here we propose an analytic approach to quantitatively evaluate the reversibility of practical lithium-metal batteries. We identify key parameters that govern the anode reversibility and subsequently establish their relationship with the cycle number by considering the mass of active and inactive Li of the cycled Li anode. Using this method, we show that the mass of active Li can be quantitatively distinguished from the mass of inactive Li of the cycled anodes in Amp hour-level pouch cells. This work opens an avenue for accurately assessing degradation and failure in lithium-metal batteries. An accurate evaluation of lithium-metal battery performance is challenging due to the excessive lithium that is often used at the anode. Here the authors report a methodology to assess the degradation mechanism and cycle life of practical lithium-metal batteries.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"7 11","pages":"1031-1041"},"PeriodicalIF":60.1000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-022-01120-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 17
Abstract
Accurate assessment of the reversibility of electrodes is crucial for battery performance evaluations. However, it is challenging to acquire the true reversibility of the Li anode in lithium-metal batteries, mainly because an excessive amount of Li is commonly used. Here we propose an analytic approach to quantitatively evaluate the reversibility of practical lithium-metal batteries. We identify key parameters that govern the anode reversibility and subsequently establish their relationship with the cycle number by considering the mass of active and inactive Li of the cycled Li anode. Using this method, we show that the mass of active Li can be quantitatively distinguished from the mass of inactive Li of the cycled anodes in Amp hour-level pouch cells. This work opens an avenue for accurately assessing degradation and failure in lithium-metal batteries. An accurate evaluation of lithium-metal battery performance is challenging due to the excessive lithium that is often used at the anode. Here the authors report a methodology to assess the degradation mechanism and cycle life of practical lithium-metal batteries.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.