Cumulative and Rolling Horizon Prediction of Overall Equipment Effectiveness (OEE) with Machine Learning

IF 3.7 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Péter Dobra, J. Jósvai
{"title":"Cumulative and Rolling Horizon Prediction of Overall Equipment Effectiveness (OEE) with Machine Learning","authors":"Péter Dobra, J. Jósvai","doi":"10.3390/bdcc7030138","DOIUrl":null,"url":null,"abstract":"Nowadays, one of the important and indispensable conditions for the effectiveness and competitiveness of industrial companies is the high efficiency of manufacturing and assembly. These enterprises based on different methods and tools systematically monitor their efficiency metrics with Key Performance Indicators (KPIs). One of these most frequently used metrics is Overall Equipment Effectiveness (OEE), the product of availability, performance and quality. In addition to monitoring, it is also necessary to predict efficiency, which can be implemented with the support of machine learning techniques. This paper presents and compares several supervised machine learning techniques amongst other polynomial regression, lasso regression, ridge regression and gradient boost regression. The aim of this article is to determine the best estimation method for semiautomatic assembly line and large batch size. The case study presented with a real industrial example gives the answer as to which of the cumulative or rolling horizon prediction methods is more accurate.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc7030138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, one of the important and indispensable conditions for the effectiveness and competitiveness of industrial companies is the high efficiency of manufacturing and assembly. These enterprises based on different methods and tools systematically monitor their efficiency metrics with Key Performance Indicators (KPIs). One of these most frequently used metrics is Overall Equipment Effectiveness (OEE), the product of availability, performance and quality. In addition to monitoring, it is also necessary to predict efficiency, which can be implemented with the support of machine learning techniques. This paper presents and compares several supervised machine learning techniques amongst other polynomial regression, lasso regression, ridge regression and gradient boost regression. The aim of this article is to determine the best estimation method for semiautomatic assembly line and large batch size. The case study presented with a real industrial example gives the answer as to which of the cumulative or rolling horizon prediction methods is more accurate.
基于机器学习的总体装备效能累积滚动预测
如今,工业企业的有效性和竞争力的重要和不可或缺的条件之一是高效率的制造和装配。这些企业基于不同的方法和工具,通过关键绩效指标(kpi)系统地监控其效率指标。其中最常用的指标之一是整体设备效率(OEE),它是可用性、性能和质量的产物。除了监测之外,还需要预测效率,这可以在机器学习技术的支持下实现。本文介绍并比较了几种有监督机器学习技术,其中包括多项式回归、lasso回归、脊回归和梯度增强回归。本文的目的是确定大批量半自动装配线的最佳估计方法。通过一个实际的工业实例,给出了累积层位预测和滚动层位预测哪种方法更准确的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Big Data and Cognitive Computing
Big Data and Cognitive Computing Business, Management and Accounting-Management Information Systems
CiteScore
7.10
自引率
8.10%
发文量
128
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信