Vanillic acid alleviates lipopolysaccharides-induced endoplasmic reticulum stress and inflammation in human lung fibroblasts by `inhibiting MAPK and NF-κB pathways
{"title":"Vanillic acid alleviates lipopolysaccharides-induced endoplasmic reticulum stress and inflammation in human lung fibroblasts by `inhibiting MAPK and NF-κB pathways","authors":"Jihua Zhao, Yao Yang","doi":"10.15586/qas.v14i1.1018","DOIUrl":null,"url":null,"abstract":"Persistent endoplasmic reticulum stress promotes aberrant inflammation and induces cell death, and inflammation is implicated in the pathogenesis of pneumonia. Vanillic acid exerts pharmacological activities, such as anti-inflammatory, antimicrobial, and antioxidant effects. However, the role of vanillic acid in pneumonia has not been elucidated yet. Human lung fibroblasts (WI-38 and MRC-5) were incubated with different concentrations of lipopolysaccharides to mimic the cell model of pneumonia. Lipopolysaccharides-treated lung fibroblasts were then incubated with different concentrations of vanillic acid. Cell viability and apoptosis were detected by MTT assay and flow cytometry, respectively. Quantitative real-time polymerase chain reaction and enzyme-linked-immunosorbent serologic assay were used to measure the levels of inflammatory factors. Western blot assay was used to detect endoplasmic reticulum stress and downstream pathway. Lipopolysaccharides induced decrease of cell viability in WI-38 and MRC-5 whereas vanillic acid increased cell viability of lipopolysaccharides-treated lung fibroblasts. Lipopolysaccharides-induced increase of cell apoptosis in lung fibroblasts was suppressed by vanillic acid through up-regulation of BCL2, and down-regulation of BCL2 associated X (BAX) and cleaved caspase-3. Vanillic acid reduced levels of tumor necrosis factor-α (TNF-α), Interleukin 6 (IL-6), and IL-1β in lipopolysaccharides-treated lung fibroblasts. Protein expression of glucose-regulated protein 78 (GRP78), X-box binding protein 1 (XBP-1), activating transcription factor-6 (ATF-6), ATF-4, and C/EBP homologous protein (CHOP) in lung fibroblasts were up-regulated by lipopolysaccharides while reduced by vanillic acid. Vanillic acid attenuated lipopolysaccharides-induced decrease of IκBα and increase of p-IκBα, p-p65, p-ERK, and p-JNK in fibroblasts. Vanillic acid exerted anti-inflammatory effect against lipopolysaccharides-induced human lung fibroblasts by inhibiting mitogen-activated protein kinase and nuclear factor kappa B pathways.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Assurance and Safety of Crops & Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15586/qas.v14i1.1018","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Persistent endoplasmic reticulum stress promotes aberrant inflammation and induces cell death, and inflammation is implicated in the pathogenesis of pneumonia. Vanillic acid exerts pharmacological activities, such as anti-inflammatory, antimicrobial, and antioxidant effects. However, the role of vanillic acid in pneumonia has not been elucidated yet. Human lung fibroblasts (WI-38 and MRC-5) were incubated with different concentrations of lipopolysaccharides to mimic the cell model of pneumonia. Lipopolysaccharides-treated lung fibroblasts were then incubated with different concentrations of vanillic acid. Cell viability and apoptosis were detected by MTT assay and flow cytometry, respectively. Quantitative real-time polymerase chain reaction and enzyme-linked-immunosorbent serologic assay were used to measure the levels of inflammatory factors. Western blot assay was used to detect endoplasmic reticulum stress and downstream pathway. Lipopolysaccharides induced decrease of cell viability in WI-38 and MRC-5 whereas vanillic acid increased cell viability of lipopolysaccharides-treated lung fibroblasts. Lipopolysaccharides-induced increase of cell apoptosis in lung fibroblasts was suppressed by vanillic acid through up-regulation of BCL2, and down-regulation of BCL2 associated X (BAX) and cleaved caspase-3. Vanillic acid reduced levels of tumor necrosis factor-α (TNF-α), Interleukin 6 (IL-6), and IL-1β in lipopolysaccharides-treated lung fibroblasts. Protein expression of glucose-regulated protein 78 (GRP78), X-box binding protein 1 (XBP-1), activating transcription factor-6 (ATF-6), ATF-4, and C/EBP homologous protein (CHOP) in lung fibroblasts were up-regulated by lipopolysaccharides while reduced by vanillic acid. Vanillic acid attenuated lipopolysaccharides-induced decrease of IκBα and increase of p-IκBα, p-p65, p-ERK, and p-JNK in fibroblasts. Vanillic acid exerted anti-inflammatory effect against lipopolysaccharides-induced human lung fibroblasts by inhibiting mitogen-activated protein kinase and nuclear factor kappa B pathways.
期刊介绍:
''Quality Assurance and Safety of Crops & Foods'' is an international peer-reviewed journal publishing research and review papers associated with the quality and safety of food and food sources including cereals, grains, oilseeds, fruits, root crops and animal sources. It targets both primary materials and their conversion to human foods. There is a strong focus on the development and application of new analytical tools and their potential for quality assessment, assurance, control and safety. The scope includes issues of risk assessment, traceability, authenticity, food security and socio-economic impacts. Manuscripts presenting novel data and information that are likely to significantly contribute to scientific knowledge in areas of food quality and safety will be considered.
''Quality Assurance and Safety of Crops & Foods'' provides a forum for all those working in the specialist field of food quality and safety to report on the progress and outcomes of their research.