{"title":"Integrals of Circulatory Systems Which are Quadratic in Momenta","authors":"Valery V. Kozlov","doi":"10.1134/S1560354721060046","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the problem of conditions for the existence of conservation laws (first integrals) of circulatory systems which are quadratic in velocities (momenta), when the external forces are nonpotential. Under some conditions the equations of motion are reduced to Hamiltonian form with some symplectic structure and the role of the Hamiltonian is played by a quadratic integral. In some cases the equations are reduced to a conformally Hamiltonian rather than Hamiltonian form. The existence of a quadratic integral and its properties allow conclusions to be drawn on the stability of equilibrium positions of circulatory systems.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"26 6","pages":"647 - 657"},"PeriodicalIF":0.8000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354721060046","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
This paper addresses the problem of conditions for the existence of conservation laws (first integrals) of circulatory systems which are quadratic in velocities (momenta), when the external forces are nonpotential. Under some conditions the equations of motion are reduced to Hamiltonian form with some symplectic structure and the role of the Hamiltonian is played by a quadratic integral. In some cases the equations are reduced to a conformally Hamiltonian rather than Hamiltonian form. The existence of a quadratic integral and its properties allow conclusions to be drawn on the stability of equilibrium positions of circulatory systems.
期刊介绍:
Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.