Optimal Configuration of Finite Source Heat Engine Cycle for Maximum Output Work with Complex Heat Transfer Law

IF 4.3 3区 工程技术 Q1 MECHANICS
Jun Li, Lingen Chen
{"title":"Optimal Configuration of Finite Source Heat Engine Cycle for Maximum Output Work with Complex Heat Transfer Law","authors":"Jun Li, Lingen Chen","doi":"10.1515/jnet-2022-0024","DOIUrl":null,"url":null,"abstract":"Abstract A finite source heat engine’s optimal configuration is studied. The model includes thermal resistance, heat leakage, a complex heat transfer law, and a heat source with variable temperature. The optimization objective is that the output work is the largest. The influences of factors such as the heat transfer law and heat leakage are analyzed. The results of this paper are universal and inclusive, and provide certain theoretical support for the performance improvement of actual heat engines.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2022-0024","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 34

Abstract

Abstract A finite source heat engine’s optimal configuration is studied. The model includes thermal resistance, heat leakage, a complex heat transfer law, and a heat source with variable temperature. The optimization objective is that the output work is the largest. The influences of factors such as the heat transfer law and heat leakage are analyzed. The results of this paper are universal and inclusive, and provide certain theoretical support for the performance improvement of actual heat engines.
具有复杂传热规律的最大输出功的有限源热机循环的优化配置
摘要研究了一种有限源热机的优化配置。该模型包括热阻、热泄漏、复杂的传热规律和可变温度的热源。优化目标是输出功最大。分析了传热规律和热泄漏等因素对传热性能的影响。本文的研究结果具有普遍性和包容性,为实际热力发动机的性能改进提供了一定的理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
18.20%
发文量
31
审稿时长
1 months
期刊介绍: The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena. Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level. The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信