{"title":"Computer-aided diagnostics of injection and combustion processes in engines equipped with Common Rail fuel injection","authors":"W. Lotko","doi":"10.29354/diag/156388","DOIUrl":null,"url":null,"abstract":"In earlier designs, the compression-ignition engine units were controlled by means of mechanical elements. They were levers, rods, springs, pawls, cams and others. The quality of such control did not ensure the required repeatability of control parameters in the fuel injection and combustion process. After the introduction of the standards limiting engine emissions of the limited exhaust components, the aforementioned engine control systems were not able to meet the requirements. The mechanical regulation of mechanical systems has been replaced by electronic control systems. It was the development of computer techniques and software that enabled design solutions of control systems for injection and combustion process parameters in engines with sufficient accuracy and repeatability of test results. The modern EDC (Electronic Diesel Control) control system, due to the computing power of microprocessors increased in recent years, enables meeting high requirements of modern Common Rail injection systems. The article presents issues in the area of four thematic levels: the design and modernization of the engine, its operation, diagnostic problems in order to determine reasons of unit failures and bench-top methods for assessing the effectiveness of unit repairs as well as issues concerning alternative fuels .","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/156388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In earlier designs, the compression-ignition engine units were controlled by means of mechanical elements. They were levers, rods, springs, pawls, cams and others. The quality of such control did not ensure the required repeatability of control parameters in the fuel injection and combustion process. After the introduction of the standards limiting engine emissions of the limited exhaust components, the aforementioned engine control systems were not able to meet the requirements. The mechanical regulation of mechanical systems has been replaced by electronic control systems. It was the development of computer techniques and software that enabled design solutions of control systems for injection and combustion process parameters in engines with sufficient accuracy and repeatability of test results. The modern EDC (Electronic Diesel Control) control system, due to the computing power of microprocessors increased in recent years, enables meeting high requirements of modern Common Rail injection systems. The article presents issues in the area of four thematic levels: the design and modernization of the engine, its operation, diagnostic problems in order to determine reasons of unit failures and bench-top methods for assessing the effectiveness of unit repairs as well as issues concerning alternative fuels .
期刊介绍:
Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.