{"title":"Preparation and Characterization of Printed LTCC Substrates for Microwave Devices","authors":"Yanfeng Shi, Yongqiang Chai, Shengbo Hu","doi":"10.1155/2019/6473587","DOIUrl":null,"url":null,"abstract":"A novel LTCC substrate manufacturing process based on 3D printing was investigated in this paper. Borosilicate glass-alumina substrates with controlled size and thickness were successfully manufactured using a self-developed dual-nozzle hybrid printing system. The printing parameters were carefully analyzed. The mechanical and dielectric properties of the printed substrate were examined. The results show that the printed substrates obtain smooth surface (Ra=0.92 μm), compact microstructure (relative density 93.7%), proper bending strength (156 mPa), and low dielectric constant and loss (Ɛr=6.2, 1/tanδ=0.0055, at 3 GHz). All of those qualify the printed glass–ceramic substrates to be used as potential LTCC substrates in the microwave applications. The proposed method could simplify the traditional LTCC technology.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/6473587","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/6473587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
A novel LTCC substrate manufacturing process based on 3D printing was investigated in this paper. Borosilicate glass-alumina substrates with controlled size and thickness were successfully manufactured using a self-developed dual-nozzle hybrid printing system. The printing parameters were carefully analyzed. The mechanical and dielectric properties of the printed substrate were examined. The results show that the printed substrates obtain smooth surface (Ra=0.92 μm), compact microstructure (relative density 93.7%), proper bending strength (156 mPa), and low dielectric constant and loss (Ɛr=6.2, 1/tanδ=0.0055, at 3 GHz). All of those qualify the printed glass–ceramic substrates to be used as potential LTCC substrates in the microwave applications. The proposed method could simplify the traditional LTCC technology.
期刊介绍:
Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.