Diana Altendorf, Hannes Grünewald, Tze-Li Liu, Jörg Dehnert, R. Trabitzsch, H. Weiss
{"title":"Decentralised ventilation efficiency for indoor radon reduction considering different environmental parameters","authors":"Diana Altendorf, Hannes Grünewald, Tze-Li Liu, Jörg Dehnert, R. Trabitzsch, H. Weiss","doi":"10.1080/10256016.2022.2047960","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n Radon-222 contributes to half of the natural radiation exposure of humans and is one of the main causes of lung cancer. Of particular importance for humans is the exposure to radon-222 indoors, which enters living and working areas from the soil air, e.g. through cracks in the foundations of buildings. An easy and efficient way to minimise indoor radon in dwellings can be achieved through ventilation. How meteorological parameters and the geological background can influence ventilation efficiency in reducing indoor radon has not yet been fully investigated. Therefore, a decentralised ventilation system was installed in an unoccupied flat located in a former uranium mining region to analyse the effect of already existing ventilation modes on indoor radon activity concentration. It is aimed to assess 22 different ventilation experiments that were performed within the time period of one year. Even with a strong seasonal trend with significantly lower indoor radon activity concentrations in summer compared to winter, the decentralised ventilation system was able to reduce indoor radon by up to 83 %. Thereby, strong dependencies on the experimental parameters such as ventilation type or performance level of the fans were found.","PeriodicalId":14597,"journal":{"name":"Isotopes in Environmental and Health Studies","volume":"58 1","pages":"195 - 213"},"PeriodicalIF":1.1000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Isotopes in Environmental and Health Studies","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10256016.2022.2047960","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT
Radon-222 contributes to half of the natural radiation exposure of humans and is one of the main causes of lung cancer. Of particular importance for humans is the exposure to radon-222 indoors, which enters living and working areas from the soil air, e.g. through cracks in the foundations of buildings. An easy and efficient way to minimise indoor radon in dwellings can be achieved through ventilation. How meteorological parameters and the geological background can influence ventilation efficiency in reducing indoor radon has not yet been fully investigated. Therefore, a decentralised ventilation system was installed in an unoccupied flat located in a former uranium mining region to analyse the effect of already existing ventilation modes on indoor radon activity concentration. It is aimed to assess 22 different ventilation experiments that were performed within the time period of one year. Even with a strong seasonal trend with significantly lower indoor radon activity concentrations in summer compared to winter, the decentralised ventilation system was able to reduce indoor radon by up to 83 %. Thereby, strong dependencies on the experimental parameters such as ventilation type or performance level of the fans were found.
期刊介绍:
Isotopes in Environmental and Health Studies provides a unique platform for stable isotope studies in geological and life sciences, with emphasis on ecology. The international journal publishes original research papers, review articles, short communications, and book reviews relating to the following topics:
-variations in natural isotope abundance (isotope ecology, isotope biochemistry, isotope hydrology, isotope geology)
-stable isotope tracer techniques to follow the fate of certain substances in soil, water, plants, animals and in the human body
-isotope effects and tracer theory linked with mathematical modelling
-isotope measurement methods and equipment with respect to environmental and health research
-diagnostic stable isotope application in medicine and in health studies
-environmental sources of ionizing radiation and its effects on all living matter