J. A. Calderón Ch., J. Tafur, Benjamín Barriga, J. Alencastre, Gonzalo Solano, Rodrigo Urbizagástegui, John H. Lozano, Marvin Chancán
{"title":"Optimal Plant Growth Through Thermo Mechatronic Analysis","authors":"J. A. Calderón Ch., J. Tafur, Benjamín Barriga, J. Alencastre, Gonzalo Solano, Rodrigo Urbizagástegui, John H. Lozano, Marvin Chancán","doi":"10.54808/jsci.20.04.76","DOIUrl":null,"url":null,"abstract":"This work is described as a proposal to apply modern control techniques and automation tools for optimal plant growth, also it was based on key agricultural strategies that were developed by ancient civilizations such as the Inca Empire. Many of them ancient techniques including the Inca engineering of andenes were forgotten or set aside through time. In this research, however, some of these key techniques are revisited to analyze and evaluate optimal plant growth using sensors and actuators that were not available in ancient civilizations. In addition, predictive and adaptive mathematical models are used for plant growth analysis of thermodynamic parameters such as temperature, humidity and potential of Hydrogen (pH). Furthermore, there were compared performances of sensors (electromechanical sensors) with designed sensors that were based in nanostructures, because of better study of the plant growth techniques.","PeriodicalId":30249,"journal":{"name":"Journal of Systemics Cybernetics and Informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systemics Cybernetics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54808/jsci.20.04.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work is described as a proposal to apply modern control techniques and automation tools for optimal plant growth, also it was based on key agricultural strategies that were developed by ancient civilizations such as the Inca Empire. Many of them ancient techniques including the Inca engineering of andenes were forgotten or set aside through time. In this research, however, some of these key techniques are revisited to analyze and evaluate optimal plant growth using sensors and actuators that were not available in ancient civilizations. In addition, predictive and adaptive mathematical models are used for plant growth analysis of thermodynamic parameters such as temperature, humidity and potential of Hydrogen (pH). Furthermore, there were compared performances of sensors (electromechanical sensors) with designed sensors that were based in nanostructures, because of better study of the plant growth techniques.