Optimization of a High Internal Phase Emulsion-Based Resin for Use in Commercial Vat Photopolymerization Additive Manufacturing.

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
3D Printing and Additive Manufacturing Pub Date : 2024-04-01 Epub Date: 2024-04-16 DOI:10.1089/3dp.2022.0235
Nihan Sengokmen Ozsoz, Samand Pashneh-Tala, Frederik Claeyssens
{"title":"Optimization of a High Internal Phase Emulsion-Based Resin for Use in Commercial Vat Photopolymerization Additive Manufacturing.","authors":"Nihan Sengokmen Ozsoz, Samand Pashneh-Tala, Frederik Claeyssens","doi":"10.1089/3dp.2022.0235","DOIUrl":null,"url":null,"abstract":"<p><p>High internal phase emulsions (HIPEs) are potential stereolithography-based resins for producing innovative lightweight porous materials; however, the use of these resins has only been shown in bespoke stereolithography setups. These studies indicated that HIPEs tend to scatter the light during structuring through stereolithography, and can produce poorly defined and low-resolution structures, but the inclusion of light absorbers can drastically increase the printing resolution. In this study, we focused on the inclusion of biocompatible light absorbers within the resin and the compatibility of those resins with a commercial vat photopolymerization additive manufacturing (or stereolithography) setup. A surfactant (hypermer)-stabilized water-in-oil emulsion based on 2-ethylhexyl-acrylate and isobornyl-acrylate was used. For the light absorbers, both hydrophobic (beta-carotene) and hydrophilic (tartrazine) molecules were used, which dissolve in the organic phase and aqueous phase, respectively. It was found that using a combination of both beta-carotene and tartrazine provided the best stereolithography-based 3D printing resolution. In addition, the emulsion was stable for the duration of the printing process and showed a porous polyHIPE structure with open surface porosity. The formulation of these HIPE-based resins permits them to be used in a wide range of applications since complex structures could be fabricated from HIPEs.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0235","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

High internal phase emulsions (HIPEs) are potential stereolithography-based resins for producing innovative lightweight porous materials; however, the use of these resins has only been shown in bespoke stereolithography setups. These studies indicated that HIPEs tend to scatter the light during structuring through stereolithography, and can produce poorly defined and low-resolution structures, but the inclusion of light absorbers can drastically increase the printing resolution. In this study, we focused on the inclusion of biocompatible light absorbers within the resin and the compatibility of those resins with a commercial vat photopolymerization additive manufacturing (or stereolithography) setup. A surfactant (hypermer)-stabilized water-in-oil emulsion based on 2-ethylhexyl-acrylate and isobornyl-acrylate was used. For the light absorbers, both hydrophobic (beta-carotene) and hydrophilic (tartrazine) molecules were used, which dissolve in the organic phase and aqueous phase, respectively. It was found that using a combination of both beta-carotene and tartrazine provided the best stereolithography-based 3D printing resolution. In addition, the emulsion was stable for the duration of the printing process and showed a porous polyHIPE structure with open surface porosity. The formulation of these HIPE-based resins permits them to be used in a wide range of applications since complex structures could be fabricated from HIPEs.

一种高内相乳化树脂的优化,用于商用还原釜光聚合增材制造
高内相乳液(HIPE)是一种潜在的基于立体光刻技术的树脂,可用于生产创新型轻质多孔材料。这些研究表明,HIPE 在通过立体光刻技术制造结构时容易散射光线,可能会制造出轮廓不清晰、分辨率低的结构,但加入光吸收剂可大幅提高打印分辨率。在本研究中,我们重点研究了在树脂中加入生物相容性光吸收剂以及这些树脂与商用大桶光聚合增材制造(或立体光刻)装置的兼容性。使用的是一种表面活性剂(聚合物)稳定的油包水乳液,以丙烯酸 2-乙基己酯和丙烯酸异冰片酯为基础。在光吸收剂方面,使用了疏水性分子(β-胡萝卜素)和亲水性分子(酒石酸),它们分别溶解在有机相和水相中。研究发现,同时使用β-胡萝卜素和酒石酸可获得最佳的基于立体光刻技术的三维打印分辨率。此外,乳液在打印过程中一直保持稳定,并显示出具有开放表面孔隙率的多孔聚 HIPE 结构。这些基于 HIPE 的树脂的配方允许它们广泛应用于各种领域,因为 HIPE 可以制造出复杂的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信