Revisiting the structural features of the xeroderma pigmentosum proteins: Focus on mutations and knowledge gaps

IF 6.4 2区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bruno César Feltes
{"title":"Revisiting the structural features of the xeroderma pigmentosum proteins: Focus on mutations and knowledge gaps","authors":"Bruno César Feltes","doi":"10.1016/j.mrrev.2022.108416","DOIUrl":null,"url":null,"abstract":"<div><p><span>The nucleotide excision repair pathway is a broadly studied DNA repair mechanism because impairments of its key players, the </span>xeroderma pigmentosum proteins (XPA to XPG), are associated with multiple hereditary diseases. Due to the massive number of novel mutations reported for these proteins and new structural data published every year, proper categorization and discussion of relevant observations is needed to organize this extensive inflow of knowledge. This review aims to revisit the structural data of all XP proteins while updating it with the information developed in of the past six years. Discussions and interpretations of mutation outcomes, mechanisms of action, and knowledge gaps regarding their structures are provided, as well as new perspectives based on recent research.</p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"789 ","pages":"Article 108416"},"PeriodicalIF":6.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Reviews in Mutation Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383574222000060","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

The nucleotide excision repair pathway is a broadly studied DNA repair mechanism because impairments of its key players, the xeroderma pigmentosum proteins (XPA to XPG), are associated with multiple hereditary diseases. Due to the massive number of novel mutations reported for these proteins and new structural data published every year, proper categorization and discussion of relevant observations is needed to organize this extensive inflow of knowledge. This review aims to revisit the structural data of all XP proteins while updating it with the information developed in of the past six years. Discussions and interpretations of mutation outcomes, mechanisms of action, and knowledge gaps regarding their structures are provided, as well as new perspectives based on recent research.

重述着色性干皮病蛋白的结构特征:关注突变和知识空白。
核苷酸切除修复途径是一种被广泛研究的DNA修复机制,因为其关键参与者,着色性干皮病蛋白(XPA至XPG)的损伤与多种遗传性疾病有关。由于这些蛋白质的大量新突变和每年发表的新结构数据,需要对相关观察进行适当的分类和讨论,以组织这些广泛的知识流入。这篇综述旨在回顾所有XP蛋白的结构数据,并与过去六年的信息更新。讨论和解释突变的结果,作用机制,和知识差距关于他们的结构,以及基于最新研究的新观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.20
自引率
1.90%
发文量
22
审稿时长
15.7 weeks
期刊介绍: The subject areas of Reviews in Mutation Research encompass the entire spectrum of the science of mutation research and its applications, with particular emphasis on the relationship between mutation and disease. Thus this section will cover advances in human genome research (including evolving technologies for mutation detection and functional genomics) with applications in clinical genetics, gene therapy and health risk assessment for environmental agents of concern.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信