Near-field electrospinning fabrication of piezoelectric polymer microfiber sensors for detection of weak mechanical excitation

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hanxiao Jiang, Xingsheng Luo, Qiusong Chen, Fan Xu, Guodong Zhu, Zaixiu Jiang, Anna A. Guliakova
{"title":"Near-field electrospinning fabrication of piezoelectric polymer microfiber sensors for detection of weak mechanical excitation","authors":"Hanxiao Jiang,&nbsp;Xingsheng Luo,&nbsp;Qiusong Chen,&nbsp;Fan Xu,&nbsp;Guodong Zhu,&nbsp;Zaixiu Jiang,&nbsp;Anna A. Guliakova","doi":"10.1049/nde2.12053","DOIUrl":null,"url":null,"abstract":"<p>Collection and conversion of widespread mechanical energy is one promising way to alleviate environmental pollution and energy crisis. Piezoelectric materials can effectively realise this conversion between mechanical and electrical energies. Here, via near-field electrospinning, piezoelectric poly(vinylidene fluoride) microfibers were fabricated on flexible polyethylene terephthalate substrate. Bending measurement indicated that open-circuit voltage response from piezoelectric microfibers was strain dependent but insensitive to bending frequency. The microfiber sensor could detect acoustic signals with sound pressure level between 70 and 120 dB and the recorded acoustic frequency was well consistent with the nominal frequency. Light wind from a low-power hand fan was also detected by this microfiber sensor. This simply structured and highly flexible piezoelectric microfiber sensor provided a promising and low-cost fabrication measure for weak mechanical excitation sensing.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"6 2","pages":"64-72"},"PeriodicalIF":3.8000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12053","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Collection and conversion of widespread mechanical energy is one promising way to alleviate environmental pollution and energy crisis. Piezoelectric materials can effectively realise this conversion between mechanical and electrical energies. Here, via near-field electrospinning, piezoelectric poly(vinylidene fluoride) microfibers were fabricated on flexible polyethylene terephthalate substrate. Bending measurement indicated that open-circuit voltage response from piezoelectric microfibers was strain dependent but insensitive to bending frequency. The microfiber sensor could detect acoustic signals with sound pressure level between 70 and 120 dB and the recorded acoustic frequency was well consistent with the nominal frequency. Light wind from a low-power hand fan was also detected by this microfiber sensor. This simply structured and highly flexible piezoelectric microfiber sensor provided a promising and low-cost fabrication measure for weak mechanical excitation sensing.

Abstract Image

近场静电纺丝制备用于检测弱机械激励的压电聚合物微纤维传感器
广泛存在的机械能的收集和转化是缓解环境污染和能源危机的一种有前景的途径。压电材料可以有效地实现这种机械能和电能之间的转换。通过近场静电纺丝,在柔性聚对苯二甲酸乙二醇酯衬底上制备了压电型聚偏氟乙烯微纤维。弯曲测量表明,压电微纤维的开路电压响应与应变有关,但对弯曲频率不敏感。该传感器可以检测到声压级在70 ~ 120 dB之间的声信号,记录的声频率与标称频率吻合较好。该微光纤传感器还可以检测到来自低功率手风扇的微风。这种结构简单、柔性高的压电微光纤传感器为弱机械激励传感提供了一种有前途的低成本制造手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信