Chung-type law of the iterated logarithm and exact moduli of continuity for a class of anisotropic Gaussian random fields

IF 1.5 2区 数学 Q2 STATISTICS & PROBABILITY
Bernoulli Pub Date : 2021-08-25 DOI:10.3150/22-bej1467
C. Lee, Yimin Xiao
{"title":"Chung-type law of the iterated logarithm and exact moduli of continuity for a class of anisotropic Gaussian random fields","authors":"C. Lee, Yimin Xiao","doi":"10.3150/22-bej1467","DOIUrl":null,"url":null,"abstract":"We establish a Chung-type law of the iterated logarithm and the exact local and uniform moduli of continuity for a large class of anisotropic Gaussian random fields with a harmonizable-type integral representation and the property of strong local nondeterminism. Compared with the existing results in the literature, our results do not require the assumption of stationary increments and provide more precise upper and lower bounds for the limiting constants. The results are applicable to the solutions of a class of linear stochastic partial differential equations driven by a fractional-colored Gaussian noise, including the stochastic heat equation.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1467","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

We establish a Chung-type law of the iterated logarithm and the exact local and uniform moduli of continuity for a large class of anisotropic Gaussian random fields with a harmonizable-type integral representation and the property of strong local nondeterminism. Compared with the existing results in the literature, our results do not require the assumption of stationary increments and provide more precise upper and lower bounds for the limiting constants. The results are applicable to the solutions of a class of linear stochastic partial differential equations driven by a fractional-colored Gaussian noise, including the stochastic heat equation.
一类各向异性高斯随机场的迭代对数的钟型律和连续的精确模
我们建立了一大类具有可调和型积分表示和强局部不确定性性质的各向异性高斯随机场的重对数Chung型律和精确的局部一致连续模。与文献中现有的结果相比,我们的结果不需要平稳增量的假设,并且为极限常数提供了更精确的上下限。该结果适用于一类由分数有色高斯噪声驱动的线性随机偏微分方程的解,包括随机热方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bernoulli
Bernoulli 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
116
审稿时长
6-12 weeks
期刊介绍: BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work. BERNOULLI will publish: Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed. Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research: Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments. Scholarly written papers on some historical significant aspect of statistics and probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信