Computation of the Homology of the Complexes of Finite Verma Modules for \({K}_{4}^{\prime }\)

IF 0.5 4区 数学 Q3 MATHEMATICS
Lucia Bagnoli
{"title":"Computation of the Homology of the Complexes of Finite Verma Modules for \\({K}_{4}^{\\prime }\\)","authors":"Lucia Bagnoli","doi":"10.1007/s10468-022-10176-9","DOIUrl":null,"url":null,"abstract":"<div><p>We compute the homology of the complexes of finite Verma modules over the annihilation superalgebra <span>\\(\\mathcal {A}({K}_{4}^{\\prime })\\)</span>, associated with the conformal superalgebra <span>\\({K}_{4}^{\\prime }\\)</span>, obtained in Bagnoli and Caselli (J. Math. Phys. <b>63</b>, 091701, 2022). We use the computation of the homology in order to provide an explicit realization of all the irreducible quotients of finite Verma modules over <span>\\(\\mathcal {A}({K}_{4}^{\\prime })\\)</span>.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"26 6","pages":"2627 - 2682"},"PeriodicalIF":0.5000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-022-10176-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-022-10176-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We compute the homology of the complexes of finite Verma modules over the annihilation superalgebra \(\mathcal {A}({K}_{4}^{\prime })\), associated with the conformal superalgebra \({K}_{4}^{\prime }\), obtained in Bagnoli and Caselli (J. Math. Phys. 63, 091701, 2022). We use the computation of the homology in order to provide an explicit realization of all the irreducible quotients of finite Verma modules over \(\mathcal {A}({K}_{4}^{\prime })\).

${K}_{4}^{\素数}$有限Verma模复合体的同调计算
我们计算了湮没超代数\(\mathcal {A}({K}_{4}^{\prime })上有限韦尔马模块复数的同调,它与共形超代数\({K}_{4}^{\prime }\)相关联。我们使用同调的计算方法来提供关于 \(\mathcal {A}({K}_{4}^\{prime })\) 的有限维尔马模块的所有不可还原商的明确实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信