Ting Deng , Ikram Hasan , Shubham Roy , Yue Liu , Baozhu Zhang , Bing Guo
{"title":"Advances in mRNA nanomedicines for malignant brain tumor therapy","authors":"Ting Deng , Ikram Hasan , Shubham Roy , Yue Liu , Baozhu Zhang , Bing Guo","doi":"10.1016/j.smaim.2022.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, malignant brain tumors are still mostly lethal diseases with poor prognosis and a clinical median survival rate of fewer than 2 years after therapeutic intervention. It is difficult to achieve complete remission of brain tumors due to blood-brain barrier (BBB) and a lack of efficient drug delivery systems to targeted transportation of brain tumor medicines. Nanoparticle delivery systems have shown merits including stability and high carrier capacity for the transportation of different drugs to treat brain tumors. The application of mRNA nanomedicines brings in great promise not only in COVID-19, but also for malignant brain tumor immunotherapy. The appropriate delivery system facilitates mRNA delivery efficiency and enhances the immune response successfully, for optimal treatment outcomes on malignant brain tumors. Herein, we do an updated review on the development of mRNA nanomedicines for malignant brain cancer treatment. We focus on how to design mRNA-loaded nanoparticle-based delivery systems with optimized pharmacokinetics and pharmacodynamics for efficient therapy of brain cancers. In addition, we point out the challenges and solutions for further development of mRNA nanomedicines for brain cancer therapy. We hope this review would stimulate interest among researchers with different backgrounds and expedite the translation from bench to bedside for the mRNA nanomedicines.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 257-265"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183422000527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Nowadays, malignant brain tumors are still mostly lethal diseases with poor prognosis and a clinical median survival rate of fewer than 2 years after therapeutic intervention. It is difficult to achieve complete remission of brain tumors due to blood-brain barrier (BBB) and a lack of efficient drug delivery systems to targeted transportation of brain tumor medicines. Nanoparticle delivery systems have shown merits including stability and high carrier capacity for the transportation of different drugs to treat brain tumors. The application of mRNA nanomedicines brings in great promise not only in COVID-19, but also for malignant brain tumor immunotherapy. The appropriate delivery system facilitates mRNA delivery efficiency and enhances the immune response successfully, for optimal treatment outcomes on malignant brain tumors. Herein, we do an updated review on the development of mRNA nanomedicines for malignant brain cancer treatment. We focus on how to design mRNA-loaded nanoparticle-based delivery systems with optimized pharmacokinetics and pharmacodynamics for efficient therapy of brain cancers. In addition, we point out the challenges and solutions for further development of mRNA nanomedicines for brain cancer therapy. We hope this review would stimulate interest among researchers with different backgrounds and expedite the translation from bench to bedside for the mRNA nanomedicines.