Melt-blended PLA/curcumin-cross-linked polyurethane film for enhanced UV-shielding ability

IF 3.2 3区 化学 Q2 POLYMER SCIENCE
e-Polymers Pub Date : 2023-01-01 DOI:10.1515/epoly-2023-0009
Xuya Fu, Tao Zhang, Wenshuo Zhang, Yuye Zhong, Shuliang Fang, Guannan Wang, Y. Li, Yajun Deng, Xinghai Liu, Houbin Li
{"title":"Melt-blended PLA/curcumin-cross-linked polyurethane film for enhanced UV-shielding ability","authors":"Xuya Fu, Tao Zhang, Wenshuo Zhang, Yuye Zhong, Shuliang Fang, Guannan Wang, Y. Li, Yajun Deng, Xinghai Liu, Houbin Li","doi":"10.1515/epoly-2023-0009","DOIUrl":null,"url":null,"abstract":"Abstract Biomass films with ultraviolet (UV)-shielding ability have attracted considerable attention. Curcumin was introduced into castor oil-based polyurethane (CCPU) as a chain extender, which was melt with polylactic acid (PLA) as a reinforcement to obtain biomass UV-shielding film. The excellent UV absorption and antioxidant qualities of curcumin contributed to the impressive UV-shielding capacity (97.6% UV radiation absorption) and antioxidant (51% free radical scavenging) of PLA/CCPU-20 film. In the scanning electron microscopic images of film fracture, the mixing of CCPU elastomer into the PLA matrix caused the blend films to exhibit significant toughening fracture characteristics compared to the pure PLA film. The excellent thermal stability, low water swelling degree, and low water solubility of PLA/CCPU blend films were maintained after CCPU was added to the PLA matrix. Therefore, the PLA/CCPU blend films can be considered as a potential packaging material because of its favorable UV-shielding properties and film stability. Graphical abstract Schematic for the preparation of the PLA/CCPU blend films.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0009","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Biomass films with ultraviolet (UV)-shielding ability have attracted considerable attention. Curcumin was introduced into castor oil-based polyurethane (CCPU) as a chain extender, which was melt with polylactic acid (PLA) as a reinforcement to obtain biomass UV-shielding film. The excellent UV absorption and antioxidant qualities of curcumin contributed to the impressive UV-shielding capacity (97.6% UV radiation absorption) and antioxidant (51% free radical scavenging) of PLA/CCPU-20 film. In the scanning electron microscopic images of film fracture, the mixing of CCPU elastomer into the PLA matrix caused the blend films to exhibit significant toughening fracture characteristics compared to the pure PLA film. The excellent thermal stability, low water swelling degree, and low water solubility of PLA/CCPU blend films were maintained after CCPU was added to the PLA matrix. Therefore, the PLA/CCPU blend films can be considered as a potential packaging material because of its favorable UV-shielding properties and film stability. Graphical abstract Schematic for the preparation of the PLA/CCPU blend films.
熔融混合PLA/姜黄素交联聚氨酯膜增强紫外线屏蔽能力
摘要生物质膜具有屏蔽紫外线的能力,引起了人们的广泛关注。将姜黄素作为扩链剂加入蓖麻油基聚氨酯(CCPU)中,与聚乳酸(PLA)熔融增强,得到生物质防紫外线膜。姜黄素具有良好的紫外吸收和抗氧化性能,使PLA/CCPU-20膜具有良好的紫外屏蔽能力(97.6%的紫外辐射吸收)和抗氧化能力(51%的自由基清除)。在薄膜断裂的扫描电镜图像中,与纯PLA薄膜相比,将cpu弹性体掺入PLA基体使共混膜表现出明显的增韧断裂特征。在PLA基体中加入CCPU后,PLA/CCPU共混膜保持了优异的热稳定性、低的水溶胀度和低的水溶性。因此,PLA/CCPU共混膜具有良好的防紫外线性能和薄膜稳定性,可被认为是一种潜在的包装材料。PLA/ cpu共混膜的制备原理图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信