Detection of sub-5nm naturally charged carbonaceous materials from a sooting laminar premixed flame by a water condensation Particle Counter (WCPC) enhanced by a Di-Ethylene Glycol (DEG) saturator inlet

IF 2.8 4区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL
Farnaz Khosravi, Gregory S. Lewis, Michel Attoui, Arantza Eiguren-Fernandez, Francesco Carbone
{"title":"Detection of sub-5nm naturally charged carbonaceous materials from a sooting laminar premixed flame by a water condensation Particle Counter (WCPC) enhanced by a Di-Ethylene Glycol (DEG) saturator inlet","authors":"Farnaz Khosravi, Gregory S. Lewis, Michel Attoui, Arantza Eiguren-Fernandez, Francesco Carbone","doi":"10.1080/02786826.2023.2247458","DOIUrl":null,"url":null,"abstract":"Abstract Combustion is one of the major contributors to air pollution and Condensation Particle Counters (CPCs) provide effective monitoring of atmospheric aerosols since they can detect both charged and neutral materials in low number concentrations. The detection efficiency of any CPC for materials smaller than 5 nm requires ad-hoc calibrations because it is affected by the analyte’s size, shape, charge state, composition, and wettability by the condensing fluid. This study characterizes a Water-based CPC (WCPC) prototype for the detection of the naturally charged carbonaceous products of an incipiently sooting laminar premixed flame. The WCPC can activate condensation growth and (50% efficient) detection of hydrophobic flame-formed carbonaceous materials naturally charged in positive and negative polarities with mobility diameters as small as 4.3 nm and 4.8 nm, respectively. The addition of a simple Di-Ethylene Glycol (DEG) saturator inlet enhances the 50% detection cutoff to mobility diameters as small as 1.8 nm or 1.6 nm for materials charged in positive or negative polarity, respectively. The coupling of the DEG saturator inlet to the WCPC creates a new DEG-WCPC instrument able to detect efficiently both hydrophobic and hydrophilic sub-5nm aerosols with a marginal increase in manufacturing cost (<10%), dimensions, and weight (<0.25 kg). Copyright © 2023 American Association for Aerosol Research Graphical Abstract","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"57 1","pages":"1069 - 1086"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02786826.2023.2247458","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Combustion is one of the major contributors to air pollution and Condensation Particle Counters (CPCs) provide effective monitoring of atmospheric aerosols since they can detect both charged and neutral materials in low number concentrations. The detection efficiency of any CPC for materials smaller than 5 nm requires ad-hoc calibrations because it is affected by the analyte’s size, shape, charge state, composition, and wettability by the condensing fluid. This study characterizes a Water-based CPC (WCPC) prototype for the detection of the naturally charged carbonaceous products of an incipiently sooting laminar premixed flame. The WCPC can activate condensation growth and (50% efficient) detection of hydrophobic flame-formed carbonaceous materials naturally charged in positive and negative polarities with mobility diameters as small as 4.3 nm and 4.8 nm, respectively. The addition of a simple Di-Ethylene Glycol (DEG) saturator inlet enhances the 50% detection cutoff to mobility diameters as small as 1.8 nm or 1.6 nm for materials charged in positive or negative polarity, respectively. The coupling of the DEG saturator inlet to the WCPC creates a new DEG-WCPC instrument able to detect efficiently both hydrophobic and hydrophilic sub-5nm aerosols with a marginal increase in manufacturing cost (<10%), dimensions, and weight (<0.25 kg). Copyright © 2023 American Association for Aerosol Research Graphical Abstract
通过二乙二醇(DEG)饱和器入口增强的水冷凝颗粒计数器(WCPC)检测来自烟熏层流预混火焰的亚5nm天然带电碳质材料
摘要燃烧是造成空气污染的主要原因之一,冷凝粒子计数器(CPC)可以检测低浓度的带电和中性物质,因此可以有效监测大气气溶胶。任何CPC对小于5的材料的检测效率 nm需要特别校准,因为它受到分析物的大小、形状、电荷状态、成分和冷凝流体的润湿性的影响。这项研究表征了一个水基CPC(WCPC)原型,用于检测初始吹灰层流预混火焰的天然带电碳质产物。WCPC可以激活缩合生长,并(50%有效)检测疏水性火焰形成的碳质材料,这些碳质材料以正负极性自然带电,迁移率直径小至4.3 nm和4.8 nm。添加一个简单的二乙二醇(DEG)饱和器入口,可将50%的检测截止值提高到小至1.8的迁移率直径 nm或1.6 对于以正极性或负极性充电的材料分别为nm。DEG饱和器入口与WCPC的耦合创造了一种新的DEG-WCPC仪器,能够有效检测疏水性和亲水性亚5nm气溶胶,制造成本(<10%)、尺寸和重量(<0.25 kg)。版权所有©2023美国气溶胶研究协会图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerosol Science and Technology
Aerosol Science and Technology 环境科学-工程:化工
CiteScore
8.40
自引率
7.70%
发文量
73
审稿时长
3 months
期刊介绍: Aerosol Science and Technology publishes theoretical, numerical and experimental investigations papers that advance knowledge of aerosols and facilitate its application. Articles on either basic or applied work are suitable. Examples of topics include instrumentation for the measurement of aerosol physical, optical, chemical and biological properties; aerosol dynamics and transport phenomena; numerical modeling; charging; nucleation; nanoparticles and nanotechnology; lung deposition and health effects; filtration; and aerosol generation. Consistent with the criteria given above, papers that deal with the atmosphere, climate change, indoor and workplace environments, homeland security, pharmaceutical aerosols, combustion sources, aerosol synthesis reactors, and contamination control in semiconductor manufacturing will be considered. AST normally does not consider papers that describe routine measurements or models for aerosol air quality assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信