{"title":"Non-asymptotic properties of spectral decomposition of large Gram-type matrices and applications","authors":"Lyuou Zhang, Wen Zhou, Haonan Wang","doi":"10.3150/21-bej1384","DOIUrl":null,"url":null,"abstract":"Gram-type matrices and their spectral decomposition are of central importance for numerous problems in statistics, applied mathematics, physics, and machine learning. In this paper, we carefully study the non-asymptotic properties of spectral decomposition of large Gram-type matrices when data are not necessarily independent. Specifically, we derive the exponential tail bounds for the deviation between eigenvectors of the right Gram matrix to their population counterparts as well as the Berry-Esseen type bound for these deviations. We also obtain the non-asymptotic tail bound of the ratio between eigenvalues of the left Gram matrix, namely the sample covariance matrix, and their population counterparts regardless of the size of the data matrix. The documented non-asymptotic properties are further demonstrated in a suite of applications, including the non-asymptotic characterization of the estimated number of latent factors in factor models and relate machine learning problems, the estimation and forecasting of high-dimensional time series, the spectral properties of large sample covariance matrix such as perturbation bounds and inference on the spectral projectors, and low-rank matrix denoising using dependent data.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/21-bej1384","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Gram-type matrices and their spectral decomposition are of central importance for numerous problems in statistics, applied mathematics, physics, and machine learning. In this paper, we carefully study the non-asymptotic properties of spectral decomposition of large Gram-type matrices when data are not necessarily independent. Specifically, we derive the exponential tail bounds for the deviation between eigenvectors of the right Gram matrix to their population counterparts as well as the Berry-Esseen type bound for these deviations. We also obtain the non-asymptotic tail bound of the ratio between eigenvalues of the left Gram matrix, namely the sample covariance matrix, and their population counterparts regardless of the size of the data matrix. The documented non-asymptotic properties are further demonstrated in a suite of applications, including the non-asymptotic characterization of the estimated number of latent factors in factor models and relate machine learning problems, the estimation and forecasting of high-dimensional time series, the spectral properties of large sample covariance matrix such as perturbation bounds and inference on the spectral projectors, and low-rank matrix denoising using dependent data.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.