Non-asymptotic properties of spectral decomposition of large Gram-type matrices and applications

IF 1.5 2区 数学 Q2 STATISTICS & PROBABILITY
Bernoulli Pub Date : 2022-05-01 DOI:10.3150/21-bej1384
Lyuou Zhang, Wen Zhou, Haonan Wang
{"title":"Non-asymptotic properties of spectral decomposition of large Gram-type matrices and applications","authors":"Lyuou Zhang, Wen Zhou, Haonan Wang","doi":"10.3150/21-bej1384","DOIUrl":null,"url":null,"abstract":"Gram-type matrices and their spectral decomposition are of central importance for numerous problems in statistics, applied mathematics, physics, and machine learning. In this paper, we carefully study the non-asymptotic properties of spectral decomposition of large Gram-type matrices when data are not necessarily independent. Specifically, we derive the exponential tail bounds for the deviation between eigenvectors of the right Gram matrix to their population counterparts as well as the Berry-Esseen type bound for these deviations. We also obtain the non-asymptotic tail bound of the ratio between eigenvalues of the left Gram matrix, namely the sample covariance matrix, and their population counterparts regardless of the size of the data matrix. The documented non-asymptotic properties are further demonstrated in a suite of applications, including the non-asymptotic characterization of the estimated number of latent factors in factor models and relate machine learning problems, the estimation and forecasting of high-dimensional time series, the spectral properties of large sample covariance matrix such as perturbation bounds and inference on the spectral projectors, and low-rank matrix denoising using dependent data.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/21-bej1384","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Gram-type matrices and their spectral decomposition are of central importance for numerous problems in statistics, applied mathematics, physics, and machine learning. In this paper, we carefully study the non-asymptotic properties of spectral decomposition of large Gram-type matrices when data are not necessarily independent. Specifically, we derive the exponential tail bounds for the deviation between eigenvectors of the right Gram matrix to their population counterparts as well as the Berry-Esseen type bound for these deviations. We also obtain the non-asymptotic tail bound of the ratio between eigenvalues of the left Gram matrix, namely the sample covariance matrix, and their population counterparts regardless of the size of the data matrix. The documented non-asymptotic properties are further demonstrated in a suite of applications, including the non-asymptotic characterization of the estimated number of latent factors in factor models and relate machine learning problems, the estimation and forecasting of high-dimensional time series, the spectral properties of large sample covariance matrix such as perturbation bounds and inference on the spectral projectors, and low-rank matrix denoising using dependent data.
大Gram型矩阵谱分解的非渐近性质及其应用
Gram型矩阵及其谱分解在统计学、应用数学、物理学和机器学习中的许多问题中具有核心重要性。在本文中,我们仔细研究了当数据不一定独立时,大Gram型矩阵谱分解的非渐近性质。具体而言,我们推导了右Gram矩阵的特征向量与其总体对应向量之间偏差的指数尾界,以及这些偏差的Berry-Essen型界。我们还获得了左Gram矩阵(即样本协方差矩阵)的特征值与其总体对应值之间的比率的非渐近尾界,而与数据矩阵的大小无关。记录的非渐近性质在一系列应用中得到了进一步的证明,包括因子模型和相关机器学习问题中潜在因素估计数量的非渐近表征、高维时间序列的估计和预测、,大样本协方差矩阵的谱特性,如谱投影上的扰动边界和推断,以及使用相关数据的低秩矩阵去噪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bernoulli
Bernoulli 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
116
审稿时长
6-12 weeks
期刊介绍: BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work. BERNOULLI will publish: Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed. Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research: Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments. Scholarly written papers on some historical significant aspect of statistics and probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信