{"title":"Rock Fall Hazard Assessment using GeoRock 2D along Swat Motorway, Pakistan","authors":"M. Adil, S. Raza, Ibrahim Amin","doi":"10.22044/JME.2021.10599.2011","DOIUrl":null,"url":null,"abstract":"Despite the slope stability measures, rock falls are witnessed at section KM-37 of the Swat motorway (M-16), Khyber Pakhtunkhwa, Pakistan. The geotechnical data analysis of the site reveals that although the chances of plane/slope failures are reduced from 43% to 23% with the help of the existing design, still there are possibilities of rock fall at the sight, which has also been witnessed during the field visits. The rock fall hazards are assessed through field tests and simulation, and significant stabilization measures are suggested. The rock fall tests are conducted, and then using the data obtained, the rock fall simulation is carried out using GeoRock 2D®. From a combination of the kinematic analysis and rock fall simulation, the hazard level along the slope ranges from moderate to high. The reason for this is the increasing velocity of the falling boulder and the impact of energy at the bottom of the slope. This is an indication of the risk, as the most hazardous area is at the toe of the slope, where the highway road is the main element at risk. Rock boulders of different shapes and sizes are released from a couple of benches in order to check their impacts on the highway. Based on the simulation, it is concluded that the spherical shaped boulders are released from higher benches covering more horizontal distances and reaching the highway with a higher bouncing heights at the toe of the slope than the cylindrical shaped boulders. The maximum bounce height of 7 m has been recorded at the toe of the slope. In order to reduce the impacts of energy and bounce heights of the boulders striking the slope surface, certain mitigation measures are suggested like a ditch of a specific size filled with sand or fine debris at the toe of the slope. Draping wire mesh on the slope surface and a retaining wall or fence would be greatly helpful and economical to reduce the rock falling hazards along the road side at section KM-37 of the Swat motorway.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JME.2021.10599.2011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 1
Abstract
Despite the slope stability measures, rock falls are witnessed at section KM-37 of the Swat motorway (M-16), Khyber Pakhtunkhwa, Pakistan. The geotechnical data analysis of the site reveals that although the chances of plane/slope failures are reduced from 43% to 23% with the help of the existing design, still there are possibilities of rock fall at the sight, which has also been witnessed during the field visits. The rock fall hazards are assessed through field tests and simulation, and significant stabilization measures are suggested. The rock fall tests are conducted, and then using the data obtained, the rock fall simulation is carried out using GeoRock 2D®. From a combination of the kinematic analysis and rock fall simulation, the hazard level along the slope ranges from moderate to high. The reason for this is the increasing velocity of the falling boulder and the impact of energy at the bottom of the slope. This is an indication of the risk, as the most hazardous area is at the toe of the slope, where the highway road is the main element at risk. Rock boulders of different shapes and sizes are released from a couple of benches in order to check their impacts on the highway. Based on the simulation, it is concluded that the spherical shaped boulders are released from higher benches covering more horizontal distances and reaching the highway with a higher bouncing heights at the toe of the slope than the cylindrical shaped boulders. The maximum bounce height of 7 m has been recorded at the toe of the slope. In order to reduce the impacts of energy and bounce heights of the boulders striking the slope surface, certain mitigation measures are suggested like a ditch of a specific size filled with sand or fine debris at the toe of the slope. Draping wire mesh on the slope surface and a retaining wall or fence would be greatly helpful and economical to reduce the rock falling hazards along the road side at section KM-37 of the Swat motorway.