{"title":"When metasurface meets hologram: principle and advances","authors":"Q. Jiang, Guofan Jin, Liangcai Cao","doi":"10.1364/AOP.11.000518","DOIUrl":null,"url":null,"abstract":"Holography has numerous applications because of its capability of arbitrary wavefront modulation. Computer-generated holograms (CGHs) take it a big step forward. Conventional holography engineers the wavefront via phase accumulation, suffering from large size, low resolution, and small viewing angle. Metasurfaces, ultrathin two-dimensional metamaterials with subwavelength features, can manipulate the amplitude, phase, and polarization of the light, solving the above issues. In this review, advances of holography, CGH algorithms, and the principles of various metasurfaces are presented. Metasurface holography, realized by encoding the hologram in the metasurface, is investigated. Information multiplexing methods of metasurface holograms, including wavelength-multiplexed, polarization-multiplexed, complex amplitude modulated, nonlinear, and dynamic metasurfaces, are presented. The challenges and outlook of metasurface holograms are discussed.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":null,"pages":null},"PeriodicalIF":25.2000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optics and Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/AOP.11.000518","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 99
Abstract
Holography has numerous applications because of its capability of arbitrary wavefront modulation. Computer-generated holograms (CGHs) take it a big step forward. Conventional holography engineers the wavefront via phase accumulation, suffering from large size, low resolution, and small viewing angle. Metasurfaces, ultrathin two-dimensional metamaterials with subwavelength features, can manipulate the amplitude, phase, and polarization of the light, solving the above issues. In this review, advances of holography, CGH algorithms, and the principles of various metasurfaces are presented. Metasurface holography, realized by encoding the hologram in the metasurface, is investigated. Information multiplexing methods of metasurface holograms, including wavelength-multiplexed, polarization-multiplexed, complex amplitude modulated, nonlinear, and dynamic metasurfaces, are presented. The challenges and outlook of metasurface holograms are discussed.
期刊介绍:
Advances in Optics and Photonics (AOP) is an all-electronic journal that publishes comprehensive review articles and multimedia tutorials. It is suitable for students, researchers, faculty, business professionals, and engineers interested in optics and photonics. The content of the journal covers advancements in these fields, ranging from fundamental science to engineering applications.
The journal aims to capture the most significant developments in optics and photonics. It achieves this through long review articles and comprehensive tutorials written by prominent and respected authors who are at the forefront of their fields.
The journal goes beyond traditional text-based articles by enhancing the content with multimedia elements, such as animation and video. This multimedia approach helps to enhance the understanding and visualization of complex concepts.
AOP offers dedicated article preparation and peer-review support to assist authors throughout the publication process. This support ensures that the articles meet the journal's standards and are well-received by readers.
Additionally, AOP welcomes comments on published review articles, encouraging further discussions and insights from the scientific community.
In summary, Advances in Optics and Photonics is a comprehensive journal that provides authoritative and accessible content on advancements in optics and photonics. With its diverse range of articles, multimedia enhancements, and dedicated support, AOP serves as a valuable resource for professionals and researchers in these fields.