Tuning magnetism by electric field in MnPS3/Sc2CO2 van der Waals heterostructure

IF 3.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED
L. Kang, Xiaohong Zheng, Peng Jiang, Zhenzhen Feng, Gaofeng Zhao
{"title":"Tuning magnetism by electric field in MnPS3/Sc2CO2 van der Waals heterostructure","authors":"L. Kang, Xiaohong Zheng, Peng Jiang, Zhenzhen Feng, Gaofeng Zhao","doi":"10.1063/5.0137508","DOIUrl":null,"url":null,"abstract":"Combining a two-dimensional (2D) antiferromagnetic (AFM) material, MnPS3 and a 2D ferroelectric material, Sc2CO2, we propose 2D van der Waals (vdW) heterostructure multiferroics to realize strong magnetoelectric coupling, which is important for designing high-performance magnetoelectric devices. By using first-principles simulations, it is found that the transition from an AFM state to a ferromagnetic (FM) state of a MnPS3 layer could be realized by reversing the polarization direction of a Sc2CO2 layer. We further reveal that such strong magnetoelectric effects originate from the large inter-layer charge transfer due to the competitive interaction between the difference of the interface work functions between MnPS3 and Sc2CO2 and the strong electronegativity of the O atom interface in the Sc2CO2 layer. Our results suggest a feasible scheme for constructing 2D vdW heterostructure multiferroics with very strong inter-layer magnetoelectric coupling effect.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0137508","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

Combining a two-dimensional (2D) antiferromagnetic (AFM) material, MnPS3 and a 2D ferroelectric material, Sc2CO2, we propose 2D van der Waals (vdW) heterostructure multiferroics to realize strong magnetoelectric coupling, which is important for designing high-performance magnetoelectric devices. By using first-principles simulations, it is found that the transition from an AFM state to a ferromagnetic (FM) state of a MnPS3 layer could be realized by reversing the polarization direction of a Sc2CO2 layer. We further reveal that such strong magnetoelectric effects originate from the large inter-layer charge transfer due to the competitive interaction between the difference of the interface work functions between MnPS3 and Sc2CO2 and the strong electronegativity of the O atom interface in the Sc2CO2 layer. Our results suggest a feasible scheme for constructing 2D vdW heterostructure multiferroics with very strong inter-layer magnetoelectric coupling effect.
利用电场调谐MnPS3/Sc2CO2范德华异质结构中的磁性
结合二维(2D)反铁磁(AFM)材料MnPS3和二维铁电材料Sc2CO2,我们提出了二维范德华(vdW)异质结构多铁性体,以实现强磁电耦合,这对设计高性能磁电器件很重要。通过使用第一性原理模拟,发现MnPS3层从AFM状态到铁磁(FM)状态的转变可以通过反转Sc2CO2层的极化方向来实现。我们进一步揭示了这种强磁电效应源于大的层间电荷转移,这是由于MnPS3和Sc2CO2之间界面功函数的差异与Sc2CO2层中O原子界面的强电负性之间的竞争性相互作用。我们的结果为构建具有很强层间磁电耦合效应的二维vdW异质结构多铁性体提供了一种可行的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信