L. Kang, Xiaohong Zheng, Peng Jiang, Zhenzhen Feng, Gaofeng Zhao
{"title":"Tuning magnetism by electric field in MnPS3/Sc2CO2 van der Waals heterostructure","authors":"L. Kang, Xiaohong Zheng, Peng Jiang, Zhenzhen Feng, Gaofeng Zhao","doi":"10.1063/5.0137508","DOIUrl":null,"url":null,"abstract":"Combining a two-dimensional (2D) antiferromagnetic (AFM) material, MnPS3 and a 2D ferroelectric material, Sc2CO2, we propose 2D van der Waals (vdW) heterostructure multiferroics to realize strong magnetoelectric coupling, which is important for designing high-performance magnetoelectric devices. By using first-principles simulations, it is found that the transition from an AFM state to a ferromagnetic (FM) state of a MnPS3 layer could be realized by reversing the polarization direction of a Sc2CO2 layer. We further reveal that such strong magnetoelectric effects originate from the large inter-layer charge transfer due to the competitive interaction between the difference of the interface work functions between MnPS3 and Sc2CO2 and the strong electronegativity of the O atom interface in the Sc2CO2 layer. Our results suggest a feasible scheme for constructing 2D vdW heterostructure multiferroics with very strong inter-layer magnetoelectric coupling effect.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0137508","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 6
Abstract
Combining a two-dimensional (2D) antiferromagnetic (AFM) material, MnPS3 and a 2D ferroelectric material, Sc2CO2, we propose 2D van der Waals (vdW) heterostructure multiferroics to realize strong magnetoelectric coupling, which is important for designing high-performance magnetoelectric devices. By using first-principles simulations, it is found that the transition from an AFM state to a ferromagnetic (FM) state of a MnPS3 layer could be realized by reversing the polarization direction of a Sc2CO2 layer. We further reveal that such strong magnetoelectric effects originate from the large inter-layer charge transfer due to the competitive interaction between the difference of the interface work functions between MnPS3 and Sc2CO2 and the strong electronegativity of the O atom interface in the Sc2CO2 layer. Our results suggest a feasible scheme for constructing 2D vdW heterostructure multiferroics with very strong inter-layer magnetoelectric coupling effect.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.