{"title":"Dynamics of Three-Dimensional Shock-Wave/Boundary-Layer Interactions","authors":"D. Gaitonde, M. Adler","doi":"10.1146/annurev-fluid-120720-022542","DOIUrl":null,"url":null,"abstract":"Advances in measuring and understanding separated, nominally two-dimensional (2D) shock-wave/turbulent-boundary-layer interactions (STBLI) have triggered recent campaigns focused on three-dimensional (3D) STBLI, which display far greater configuration diversity. Nonetheless, unifying properties emerge for semi-infinite interactions, taking the form of conical asymptotic behavior where shock-generator specifics become insignificant. The contrast between 2D and 3D separation is substantial; the skewed vortical structure of 3D STBLI reflects the essentially 2D influence of the boundary layer on the 3D character of the swept shock. As with 2D STBLI, conical interactions engender prominent spectral content below that of the turbulent boundary layer. However, the uniform separation length scale, which is crucial to normalizing the lowest-frequency dynamics in 2D STBLI, is absent. Comparatively, the spectra of 3D STBLI are more representative of the mid-frequency, convective, shear-layer dynamics in 2D, while phenomena associated with 2D separation-shock breathing are muted. Asymptotic behavior breaks down in many regions important to 3D-STBLI dynamics, occurring in a configuration-dependent manner. Aspects of inceptive regions near shock generators and symmetry planes are reviewed. Focused efforts toward 3D modal and nonmodal analyses, moving-shock/boundary-layer interactions, fluid/structure interactions, and flow control are suggested as directions for future work. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-120720-022542","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 13
Abstract
Advances in measuring and understanding separated, nominally two-dimensional (2D) shock-wave/turbulent-boundary-layer interactions (STBLI) have triggered recent campaigns focused on three-dimensional (3D) STBLI, which display far greater configuration diversity. Nonetheless, unifying properties emerge for semi-infinite interactions, taking the form of conical asymptotic behavior where shock-generator specifics become insignificant. The contrast between 2D and 3D separation is substantial; the skewed vortical structure of 3D STBLI reflects the essentially 2D influence of the boundary layer on the 3D character of the swept shock. As with 2D STBLI, conical interactions engender prominent spectral content below that of the turbulent boundary layer. However, the uniform separation length scale, which is crucial to normalizing the lowest-frequency dynamics in 2D STBLI, is absent. Comparatively, the spectra of 3D STBLI are more representative of the mid-frequency, convective, shear-layer dynamics in 2D, while phenomena associated with 2D separation-shock breathing are muted. Asymptotic behavior breaks down in many regions important to 3D-STBLI dynamics, occurring in a configuration-dependent manner. Aspects of inceptive regions near shock generators and symmetry planes are reviewed. Focused efforts toward 3D modal and nonmodal analyses, moving-shock/boundary-layer interactions, fluid/structure interactions, and flow control are suggested as directions for future work. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.