Heat Load Prediction for District Heating Systems with Temporal Convolutional Network and CatBoost

IF 0.9 Q4 ENERGY & FUELS
C. Han, M. Gong, J. Sun, Y. Zhao, L. Jing, C. Dong, Z. Zhao
{"title":"Heat Load Prediction for District Heating Systems with Temporal Convolutional Network and CatBoost","authors":"C. Han,&nbsp;M. Gong,&nbsp;J. Sun,&nbsp;Y. Zhao,&nbsp;L. Jing,&nbsp;C. Dong,&nbsp;Z. Zhao","doi":"10.1134/S0040601523090045","DOIUrl":null,"url":null,"abstract":"<p>Accurate heat load prediction is essential for heat production and refined management of district heating systems (DHSs). More advanced technology can often achieve more accurate forecasts. This paper suggests using temporal convolutional network (TCN) and categorical boosting (CatBoost) for heat load prediction. To test the performance of TCN and CatBoost in heat load prediction missions, two additional benchmark models, the decision tree model (DT) and the statistically based multiple linear regression (MLR), are built for comparison. A DHS in Tianjin, China, is used as the study case. Two historical operational characters (day-ahead heat load and hour-ahead heat load) and four meteorological characters (outdoor temperature, relative humidity, wind scale, and air quality index) are selected as input features for the models. The prediction results of every model on the test set are displayed and discussed. The experimental findings indicate that the prediction results of TCN and CatBoost are more accurate than the traditional prediction models, while the modeling process of CatBoost is simpler. Overall, TCN and CatBoost are potential heat load prediction methods.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"70 9","pages":"719 - 726"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601523090045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate heat load prediction is essential for heat production and refined management of district heating systems (DHSs). More advanced technology can often achieve more accurate forecasts. This paper suggests using temporal convolutional network (TCN) and categorical boosting (CatBoost) for heat load prediction. To test the performance of TCN and CatBoost in heat load prediction missions, two additional benchmark models, the decision tree model (DT) and the statistically based multiple linear regression (MLR), are built for comparison. A DHS in Tianjin, China, is used as the study case. Two historical operational characters (day-ahead heat load and hour-ahead heat load) and four meteorological characters (outdoor temperature, relative humidity, wind scale, and air quality index) are selected as input features for the models. The prediction results of every model on the test set are displayed and discussed. The experimental findings indicate that the prediction results of TCN and CatBoost are more accurate than the traditional prediction models, while the modeling process of CatBoost is simpler. Overall, TCN and CatBoost are potential heat load prediction methods.

Abstract Image

基于时间卷积网络和CatBoost的区域供热系统热负荷预测
准确的热负荷预测对区域供热系统的产热和精细化管理至关重要。更先进的技术往往可以实现更准确的预测。本文建议采用时间卷积网络(TCN)和分类增强(CatBoost)进行热负荷预测。为了测试TCN和CatBoost在热负荷预测任务中的性能,建立了两个额外的基准模型,决策树模型(DT)和基于统计的多元线性回归(MLR)进行比较。以中国天津的一个国土安全部为研究案例。选取2个历史运行特征(日前热负荷和小时前热负荷)和4个气象特征(室外温度、相对湿度、风标度和空气质量指数)作为模型的输入特征。对各模型在测试集上的预测结果进行了显示和讨论。实验结果表明,TCN和CatBoost的预测结果比传统的预测模型更准确,而CatBoost的建模过程更简单。总的来说,TCN和CatBoost是潜在热负荷预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
20.00%
发文量
94
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信