ORT: Occlusion-robust for multi-object tracking

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary
Shoudong Han , Hongwei Wang , En Yu , Zhuo Hu
{"title":"ORT: Occlusion-robust for multi-object tracking","authors":"Shoudong Han ,&nbsp;Hongwei Wang ,&nbsp;En Yu ,&nbsp;Zhuo Hu","doi":"10.1016/j.fmre.2023.02.003","DOIUrl":null,"url":null,"abstract":"<div><div>Although the joint-detection-and-tracking paradigm has promoted the development of multi-object tracking (MOT) significantly, the long-term occlusion problem is still unsolved. After a period of trajectory inactivation due to occlusion, it is difficult to achieve trajectory reconnection with appearance features because they are no longer reliable. Although using motion cues does not suffer from occlusion, the commonly used Kalman Filter is also ineffective in its long-term inertia prediction in cases of no observation updates or wrong updates. Besides, occlusion is prone to cause multiple track-detection pairs to have close similarity scores during the data association phase. The direct use of the Hungarian algorithm to give the global optimal solution may generate the identity switching problem. In this paper, we propose the Long-term Spatio-Temporal Prediction (LSTP) module and the Ordered Association (OA) module to alleviate the occlusion problem in terms of motion prediction and data association, respectively. The LSTP module estimates the states of all tracked objects over time using a combination of spatial and temporal Transformers. The spatial Transformer models crowd interaction and learns the influence of neighbors, while the temporal Transformer models the temporal continuity of historical trajectories. Besides, the LSTP module also predicts the visibilities of the motion prediction boxes, which denote the occlusion attributes of trajectories. Based on the occlusion attribute and active state, the association priority is defined in the OA module to associate trajectories in order, which helps to alleviate the identity switching problem. Comprehensive experiments on the MOT17 and MOT20 benchmarks indicate the superiority of the proposed MOT framework, namely Occlusion-Robust Tracker (ORT). Without using any appearance information, our ORT can achieve competitive performance beyond other state-of-the-art trackers in terms of trajectory accuracy and purity.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 3","pages":"Pages 1214-1220"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325823000328","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Although the joint-detection-and-tracking paradigm has promoted the development of multi-object tracking (MOT) significantly, the long-term occlusion problem is still unsolved. After a period of trajectory inactivation due to occlusion, it is difficult to achieve trajectory reconnection with appearance features because they are no longer reliable. Although using motion cues does not suffer from occlusion, the commonly used Kalman Filter is also ineffective in its long-term inertia prediction in cases of no observation updates or wrong updates. Besides, occlusion is prone to cause multiple track-detection pairs to have close similarity scores during the data association phase. The direct use of the Hungarian algorithm to give the global optimal solution may generate the identity switching problem. In this paper, we propose the Long-term Spatio-Temporal Prediction (LSTP) module and the Ordered Association (OA) module to alleviate the occlusion problem in terms of motion prediction and data association, respectively. The LSTP module estimates the states of all tracked objects over time using a combination of spatial and temporal Transformers. The spatial Transformer models crowd interaction and learns the influence of neighbors, while the temporal Transformer models the temporal continuity of historical trajectories. Besides, the LSTP module also predicts the visibilities of the motion prediction boxes, which denote the occlusion attributes of trajectories. Based on the occlusion attribute and active state, the association priority is defined in the OA module to associate trajectories in order, which helps to alleviate the identity switching problem. Comprehensive experiments on the MOT17 and MOT20 benchmarks indicate the superiority of the proposed MOT framework, namely Occlusion-Robust Tracker (ORT). Without using any appearance information, our ORT can achieve competitive performance beyond other state-of-the-art trackers in terms of trajectory accuracy and purity.
ORT:多目标跟踪的遮挡鲁棒性
尽管联合检测与跟踪模式极大地促进了多目标跟踪(MOT)的发展,但长期遮挡问题仍未得到解决。由于遮挡导致轨迹失活一段时间后,由于轨迹与外观特征不再可靠,很难实现轨迹与外观特征的重新连接。虽然使用运动线索不会受到遮挡的影响,但在没有观测更新或错误更新的情况下,常用的卡尔曼滤波器在长期惯性预测中也是无效的。此外,在数据关联阶段,遮挡容易导致多个轨迹检测对具有相近的相似分数。直接使用匈牙利算法给出全局最优解可能会产生身份切换问题。本文分别从运动预测和数据关联两个方面提出了长期时空预测(LSTP)模块和有序关联(OA)模块来缓解遮挡问题。LSTP模块使用空间和时间转换器的组合来估计所有跟踪对象的状态。空间变形模型模拟群体互动并学习邻居的影响,而时间变形模型模拟历史轨迹的时间连续性。此外,LSTP模块还预测运动预测框的可见性,运动预测框表示轨迹的遮挡属性。基于遮挡属性和活动状态,在OA模块中定义关联优先级,对轨迹进行顺序关联,有助于缓解身份切换问题。在MOT17和MOT20基准测试上的综合实验表明了所提出的MOT框架的优越性,即闭塞鲁棒跟踪器(ORT)。在不使用任何外观信息的情况下,我们的ORT可以在轨迹精度和纯度方面达到比其他最先进的跟踪器更具竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信