Imputation-based empirical likelihood inferences for partially nonlinear quantile regression models with missing responses

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoshuang Zhou, Peixin Zhao, Yujie Gai
{"title":"Imputation-based empirical likelihood inferences for partially nonlinear quantile regression models with missing responses","authors":"Xiaoshuang Zhou,&nbsp;Peixin Zhao,&nbsp;Yujie Gai","doi":"10.1007/s10182-022-00441-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the confidence interval construction for the partially nonlinear models with missing responses at random under the framework of quantile regression. We propose an imputation-based empirical likelihood method to construct statistical inferences for both the unknown parametric vector in the nonlinear function and the nonparametric function and show that the proposed empirical log-likelihood ratios are both asymptotically chi-squared in theory. Furthermore, the confidence region for the parametric vector and the pointwise confidence interval for the nonparametric function are constructed. Some simulation studies are implemented to assess the performances of the proposed estimation method, and simulation results indicate that the proposed method is workable.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-022-00441-z.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-022-00441-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we consider the confidence interval construction for the partially nonlinear models with missing responses at random under the framework of quantile regression. We propose an imputation-based empirical likelihood method to construct statistical inferences for both the unknown parametric vector in the nonlinear function and the nonparametric function and show that the proposed empirical log-likelihood ratios are both asymptotically chi-squared in theory. Furthermore, the confidence region for the parametric vector and the pointwise confidence interval for the nonparametric function are constructed. Some simulation studies are implemented to assess the performances of the proposed estimation method, and simulation results indicate that the proposed method is workable.

Abstract Image

缺失响应部分非线性分位数回归模型的基于假设的经验似然推断
本文研究了在分位数回归框架下随机缺失响应的部分非线性模型的置信区间构造问题。我们提出了一种基于假设的经验似然方法来构造非线性函数和非参数函数中未知参数向量的统计推断,并证明了所提出的经验对数似然比在理论上都是渐近卡方的。进一步构造了参数向量的置信域和非参数函数的逐点置信区间。通过仿真研究对所提估计方法的性能进行了评估,仿真结果表明所提方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信