Imputation-based empirical likelihood inferences for partially nonlinear quantile regression models with missing responses

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Xiaoshuang Zhou, Peixin Zhao, Yujie Gai
{"title":"Imputation-based empirical likelihood inferences for partially nonlinear quantile regression models with missing responses","authors":"Xiaoshuang Zhou,&nbsp;Peixin Zhao,&nbsp;Yujie Gai","doi":"10.1007/s10182-022-00441-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the confidence interval construction for the partially nonlinear models with missing responses at random under the framework of quantile regression. We propose an imputation-based empirical likelihood method to construct statistical inferences for both the unknown parametric vector in the nonlinear function and the nonparametric function and show that the proposed empirical log-likelihood ratios are both asymptotically chi-squared in theory. Furthermore, the confidence region for the parametric vector and the pointwise confidence interval for the nonparametric function are constructed. Some simulation studies are implemented to assess the performances of the proposed estimation method, and simulation results indicate that the proposed method is workable.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"106 4","pages":"705 - 722"},"PeriodicalIF":1.4000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-022-00441-z.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-022-00441-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we consider the confidence interval construction for the partially nonlinear models with missing responses at random under the framework of quantile regression. We propose an imputation-based empirical likelihood method to construct statistical inferences for both the unknown parametric vector in the nonlinear function and the nonparametric function and show that the proposed empirical log-likelihood ratios are both asymptotically chi-squared in theory. Furthermore, the confidence region for the parametric vector and the pointwise confidence interval for the nonparametric function are constructed. Some simulation studies are implemented to assess the performances of the proposed estimation method, and simulation results indicate that the proposed method is workable.

Abstract Image

缺失响应部分非线性分位数回归模型的基于假设的经验似然推断
本文研究了在分位数回归框架下随机缺失响应的部分非线性模型的置信区间构造问题。我们提出了一种基于假设的经验似然方法来构造非线性函数和非参数函数中未知参数向量的统计推断,并证明了所提出的经验对数似然比在理论上都是渐近卡方的。进一步构造了参数向量的置信域和非参数函数的逐点置信区间。通过仿真研究对所提估计方法的性能进行了评估,仿真结果表明所提方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信