Minimal conceptual models for tropical cyclone intensification

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Michael T. Montgomery , Roger K. Smith
{"title":"Minimal conceptual models for tropical cyclone intensification","authors":"Michael T. Montgomery ,&nbsp;Roger K. Smith","doi":"10.1016/j.tcrr.2022.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>We examine a hierarchy of minimal conceptual models for tropical cyclone intensification. These models are framed mostly in terms of axisymmetric balance dynamics. In the first set of models, the heating rate is prescribed in such a way to mimic a deep overturning circulation with convergence in the lower troposphere and divergence in the upper troposphere, characteristic of a region of deep moist convection. In the second set, the heating rate is related explicitly to the latent heat release of ascending air parcels. The release of latent heat markedly reduces the local static stability of ascending air, raising two possibilities in the balance framework. The first possibility is that the effective static stability and the related discriminant in the Eliassen equation for the overturning circulation in saturated air, although small, remains positive so the Eliassen equation is globally elliptic. The second possibility, the more likely one during vortex intensification, is that the effective static stability in saturated air is negative and the Eliassen equation becomes locally hyperbolic. These models help to understand the differences between the early Ooyama models of 1968 and 1969, the Emanuel, 1989 model, and the later Emanuel models of 1995, 1997 and 2012. They provide insight also into the popular explanation of the WISHE feedback mechanism for tropical cyclone intensification. Some implications for recent work are discussed.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"11 2","pages":"Pages 61-75"},"PeriodicalIF":2.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2225603222000121/pdfft?md5=3a82980019123738bb0bae5f2e870a1f&pid=1-s2.0-S2225603222000121-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603222000121","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

We examine a hierarchy of minimal conceptual models for tropical cyclone intensification. These models are framed mostly in terms of axisymmetric balance dynamics. In the first set of models, the heating rate is prescribed in such a way to mimic a deep overturning circulation with convergence in the lower troposphere and divergence in the upper troposphere, characteristic of a region of deep moist convection. In the second set, the heating rate is related explicitly to the latent heat release of ascending air parcels. The release of latent heat markedly reduces the local static stability of ascending air, raising two possibilities in the balance framework. The first possibility is that the effective static stability and the related discriminant in the Eliassen equation for the overturning circulation in saturated air, although small, remains positive so the Eliassen equation is globally elliptic. The second possibility, the more likely one during vortex intensification, is that the effective static stability in saturated air is negative and the Eliassen equation becomes locally hyperbolic. These models help to understand the differences between the early Ooyama models of 1968 and 1969, the Emanuel, 1989 model, and the later Emanuel models of 1995, 1997 and 2012. They provide insight also into the popular explanation of the WISHE feedback mechanism for tropical cyclone intensification. Some implications for recent work are discussed.

热带气旋增强的最小概念模式
我们研究了热带气旋增强的最小概念模式的层次结构。这些模型大多是根据轴对称平衡动力学来构建的。在第一组模式中,加热速率是这样规定的,以模拟对流层下部辐合和对流层上部辐散的深层翻转环流,具有深层潮湿对流区域的特征。在第二组中,升温速率与上升空气包裹的潜热释放有明确的关系。潜热的释放显著降低了上升空气的局部静态稳定性,在平衡框架中提出了两种可能性。第一种可能是饱和空气中翻转环流的Eliassen方程的有效静稳定性和相关判判式虽然很小,但仍然是正的,因此Eliassen方程是全局椭圆的。第二种可能性,在涡旋增强过程中更可能出现的一种,是饱和空气中的有效静稳定性为负,Eliassen方程成为局部双曲。这些模型有助于理解1968年和1969年早期Ooyama模型、1989年Emanuel模型和1995年、1997年和2012年后期Emanuel模型之间的差异。它们还提供了对热带气旋增强的WISHE反馈机制的流行解释的见解。讨论了对近期工作的一些启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信