How people deal with …............................ outliers

IF 1.8 3区 心理学 Q3 PSYCHOLOGY, APPLIED
Jennifer E. Dannals, Daniel M. Oppenheimer
{"title":"How people deal with …............................ outliers","authors":"Jennifer E. Dannals,&nbsp;Daniel M. Oppenheimer","doi":"10.1002/bdm.2303","DOIUrl":null,"url":null,"abstract":"<p>People regularly make sense of distributions that are complicated by noise. How do individuals determine whether an outlying observation should be incorporated into one's understanding of the true distribution of the population or considered a fluke that ought to be disregarded? In a simple prediction task, we examine how individuals incorporate outliers and compare their behavior to various prescriptive models (e.g., averaging and tests of discordancy). We find that, on average, individuals do discount outlying values and that their outlier detection strategies approximate approaches that statisticians have recommended for Gaussian distributions, even when the observed distributions are not Gaussian. However, there are notable differences in treatment of outliers across individuals.</p>","PeriodicalId":48112,"journal":{"name":"Journal of Behavioral Decision Making","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Behavioral Decision Making","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdm.2303","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

People regularly make sense of distributions that are complicated by noise. How do individuals determine whether an outlying observation should be incorporated into one's understanding of the true distribution of the population or considered a fluke that ought to be disregarded? In a simple prediction task, we examine how individuals incorporate outliers and compare their behavior to various prescriptive models (e.g., averaging and tests of discordancy). We find that, on average, individuals do discount outlying values and that their outlier detection strategies approximate approaches that statisticians have recommended for Gaussian distributions, even when the observed distributions are not Gaussian. However, there are notable differences in treatment of outliers across individuals.

人们如何处理…。。。。。。。。。。。。。。。。。。。。。。。。。。。。异常值
人们通常会理解由于噪声而变得复杂的分布。个体如何决定是否应该将一个孤立的观察结果纳入对总体真实分布的理解,还是应该将其视为应该忽略的侥幸?在一个简单的预测任务中,我们检查个体如何纳入异常值,并将其行为与各种规范模型(例如,平均和不一致性测试)进行比较。我们发现,平均而言,个体确实会忽略离群值,并且他们的离群检测策略近似于统计学家推荐的高斯分布方法,即使观察到的分布不是高斯分布。然而,个体间异常值的处理存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
5.00%
发文量
40
期刊介绍: The Journal of Behavioral Decision Making is a multidisciplinary journal with a broad base of content and style. It publishes original empirical reports, critical review papers, theoretical analyses and methodological contributions. The Journal also features book, software and decision aiding technique reviews, abstracts of important articles published elsewhere and teaching suggestions. The objective of the Journal is to present and stimulate behavioral research on decision making and to provide a forum for the evaluation of complementary, contrasting and conflicting perspectives. These perspectives include psychology, management science, sociology, political science and economics. Studies of behavioral decision making in naturalistic and applied settings are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信