Research on temperature rise characteristics of end V-groove ring seal

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE
Le Zhang, Lidong He, Ze Yan, Weize Dai, Xingyun Jia, Chunrui Liu, Wenhao Wang
{"title":"Research on temperature rise characteristics of end V-groove ring seal","authors":"Le Zhang, Lidong He, Ze Yan, Weize Dai, Xingyun Jia, Chunrui Liu, Wenhao Wang","doi":"10.1515/tjj-2022-0013","DOIUrl":null,"url":null,"abstract":"Abstract Aiming at the problem of frictional heat generation under high pressure and high speed of the piston ring, the V-groove piston ring is proposed. The finite element analysis method is used to compare and analyze the temperature distribution law of the traditional piston ring and V-groove piston ring. The experimental study on the temperature rise of the piston ring seal is carried out by using the high-pressure and high-speed rotating sealing experimental bench. The experimental results are consistent with the simulation results. The results show that when the rotor speed increases by 1000 rpm, the temperature rise of the traditional piston ring increases by 18.4%, the V-groove piston ring increases by 17.2%. For every 0.5 MPa increase in the pressure applied to the piston ring, the temperature rise of the traditional piston ring increases by 9.2%, the V-groove piston ring increases by 5.8%. The same under the working conditions, the temperature rise of the V-groove piston ring is reduced by 21–29% compared with the traditional piston ring, and the leakage of the V-groove piston ring is reduced by 12–19% compared with the traditional piston ring. The synergistic design of low temperature rises and low leakage of the piston ring.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2022-0013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Aiming at the problem of frictional heat generation under high pressure and high speed of the piston ring, the V-groove piston ring is proposed. The finite element analysis method is used to compare and analyze the temperature distribution law of the traditional piston ring and V-groove piston ring. The experimental study on the temperature rise of the piston ring seal is carried out by using the high-pressure and high-speed rotating sealing experimental bench. The experimental results are consistent with the simulation results. The results show that when the rotor speed increases by 1000 rpm, the temperature rise of the traditional piston ring increases by 18.4%, the V-groove piston ring increases by 17.2%. For every 0.5 MPa increase in the pressure applied to the piston ring, the temperature rise of the traditional piston ring increases by 9.2%, the V-groove piston ring increases by 5.8%. The same under the working conditions, the temperature rise of the V-groove piston ring is reduced by 21–29% compared with the traditional piston ring, and the leakage of the V-groove piston ring is reduced by 12–19% compared with the traditional piston ring. The synergistic design of low temperature rises and low leakage of the piston ring.
端面v型槽环密封温升特性研究
摘要针对活塞环在高压高速下产生摩擦热的问题,提出了v型槽活塞环。采用有限元分析方法对传统活塞环和v型槽活塞环的温度分布规律进行了比较分析。利用高压高速旋转密封试验台对活塞环密封温升进行了实验研究。实验结果与仿真结果吻合较好。结果表明:当转子转速每增加1000 rpm时,传统活塞环的温升提高18.4%,v型槽活塞环的温升提高17.2%;施加在活塞环上的压力每增加0.5 MPa,传统活塞环的温升提高9.2%,v型槽活塞环的温升提高5.8%。同样在工作条件下,v型槽活塞环的温升比传统活塞环降低21-29%,v型槽活塞环的泄漏量比传统活塞环减少12-19%。低温升和低泄漏活塞环的协同设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Turbo & Jet-Engines
International Journal of Turbo & Jet-Engines 工程技术-工程:宇航
CiteScore
1.90
自引率
11.10%
发文量
36
审稿时长
6 months
期刊介绍: The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines. The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信