{"title":"SPADExp: A photoemission angular distribution simulator directly linked to first-principles calculations","authors":"Hiroaki Tanaka , Kenta Kuroda , Tomohiro Matsushita","doi":"10.1016/j.elspec.2023.147297","DOIUrl":null,"url":null,"abstract":"<div><p><span>We develop a software package SPADExp (simulator of photoemission<span> angular distribution for experiments) to calculate the photoemission angular distribution (PAD), which is the momentum dependence of spectrum intensity in angle-resolved photoemission spectroscopy (ARPES). The software can directly load the output of the first-principles software package OpenMX, so users do not need to construct tight-binding models as previous studies did for PAD calculations. As a result, we can calculate the PADs of large systems such as quasicrystals<span> and slab systems. We calculate the PADs of sublattice systems (graphene and graphite) to reproduce characteristic intensity distributions, which ARPES has experimentally observed. After that, we investigate twisted bilayer graphene, a quasicrystal showing 12-fold rotational symmetric spectra in ARPES, and the surface states of the topological insulator </span></span></span><span><math><mrow><msub><mrow><mi>Bi</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Se</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>. Our calculations show good agreement with previous ARPES measurements, showing the correctness of our calculation software and further potential to investigate the photoemission spectra of novel quantum materials.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368204823000142","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a software package SPADExp (simulator of photoemission angular distribution for experiments) to calculate the photoemission angular distribution (PAD), which is the momentum dependence of spectrum intensity in angle-resolved photoemission spectroscopy (ARPES). The software can directly load the output of the first-principles software package OpenMX, so users do not need to construct tight-binding models as previous studies did for PAD calculations. As a result, we can calculate the PADs of large systems such as quasicrystals and slab systems. We calculate the PADs of sublattice systems (graphene and graphite) to reproduce characteristic intensity distributions, which ARPES has experimentally observed. After that, we investigate twisted bilayer graphene, a quasicrystal showing 12-fold rotational symmetric spectra in ARPES, and the surface states of the topological insulator . Our calculations show good agreement with previous ARPES measurements, showing the correctness of our calculation software and further potential to investigate the photoemission spectra of novel quantum materials.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.