{"title":"A note on synthetic data for replication purposes in agricultural economics","authors":"Stefan Wimmer, Robert Finger","doi":"10.1111/1477-9552.12505","DOIUrl":null,"url":null,"abstract":"<p>Empirical studies in agricultural economics usually involve policy implications. In many cases, such studies rely on proprietary or confidential data that cannot be published along with the article, challenging the replicability and credibility of the results. To overcome this problem, the use of synthetic data—that is, data that do not contain a single unit of the original data—has been proposed. In this note, we illustrate the utility of synthetic data generation methods for replication purposes using a range of methods from agricultural production analysis. More specifically, we compare input elasticities and technical efficiency scores based on different farm-level production data between original data and synthetic data. We generate synthetic data using a non-parametric method of classification and regression trees (CART) and parametric linear regressions. We find synthetic data result in elasticities and technical efficiency distributions that are very similar to the original data, especially when generated with CART, and conclude with implications for the research community.</p>","PeriodicalId":14994,"journal":{"name":"Journal of Agricultural Economics","volume":"74 1","pages":"316-323"},"PeriodicalIF":3.4000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1477-9552.12505","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Economics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1477-9552.12505","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
引用次数: 3
Abstract
Empirical studies in agricultural economics usually involve policy implications. In many cases, such studies rely on proprietary or confidential data that cannot be published along with the article, challenging the replicability and credibility of the results. To overcome this problem, the use of synthetic data—that is, data that do not contain a single unit of the original data—has been proposed. In this note, we illustrate the utility of synthetic data generation methods for replication purposes using a range of methods from agricultural production analysis. More specifically, we compare input elasticities and technical efficiency scores based on different farm-level production data between original data and synthetic data. We generate synthetic data using a non-parametric method of classification and regression trees (CART) and parametric linear regressions. We find synthetic data result in elasticities and technical efficiency distributions that are very similar to the original data, especially when generated with CART, and conclude with implications for the research community.
期刊介绍:
Published on behalf of the Agricultural Economics Society, the Journal of Agricultural Economics is a leading international professional journal, providing a forum for research into agricultural economics and related disciplines such as statistics, marketing, business management, politics, history and sociology, and their application to issues in the agricultural, food, and related industries; rural communities, and the environment.
Each issue of the JAE contains articles, notes and book reviews as well as information relating to the Agricultural Economics Society. Published 3 times a year, it is received by members and institutional subscribers in 69 countries. With contributions from leading international scholars, the JAE is a leading citation for agricultural economics and policy. Published articles either deal with new developments in research and methods of analysis, or apply existing methods and techniques to new problems and situations which are of general interest to the Journal’s international readership.