Deep learning in extracting tropical cyclone intensity and wind radius information from satellite infrared images—A review

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Chong Wang , Xiaofeng Li
{"title":"Deep learning in extracting tropical cyclone intensity and wind radius information from satellite infrared images—A review","authors":"Chong Wang ,&nbsp;Xiaofeng Li","doi":"10.1016/j.aosl.2023.100373","DOIUrl":null,"url":null,"abstract":"<div><p>Tropical cyclones (TCs) seriously endanger human life and the safety of property. Real-time monitoring of TCs has been one of the focal points in meteorological studies. With the development of space technology and sensor technology, satellite remote sensing has become the main means of monitoring TCs. Furthermore, with its superior data mining capability, deep learning has shown advantages over traditional physical or statistical-based algorithms in the geosciences. As a result, more deep-learning algorithms are being developed and applied to extract TC information. This paper systematically reviews the deep-learning frameworks used for TC information extraction and then gives two typical applications of deep-learning models for TC intensity and wind radius estimation. In addition, the authors present an outlook on the future perspectives of deep learning in TC information extraction.</p><p>摘要</p><p>热带气旋 (TC) 严重危害人类生命和财产安全, TC的实时监测一直是研究热点, 随着空间和传感器技术的发展, 卫星遥感已成为监测TC的主要手段. 此外, 深度学习具有卓越的数据挖掘能力, 在地球科学中的表现优于基于物理或统计的算法, 越来越多的深度学习算法被开发和应用于TC信息的提取, 本文系统地回顾了深度学习在TC信息提取中的应用, 并给出了深度学习模型在TC强度和风圈半径提取中的应用. 此外, 本文还展望了深度学习在TC信息提取中的应用前景.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 4","pages":"Article 100373"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283423000594","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tropical cyclones (TCs) seriously endanger human life and the safety of property. Real-time monitoring of TCs has been one of the focal points in meteorological studies. With the development of space technology and sensor technology, satellite remote sensing has become the main means of monitoring TCs. Furthermore, with its superior data mining capability, deep learning has shown advantages over traditional physical or statistical-based algorithms in the geosciences. As a result, more deep-learning algorithms are being developed and applied to extract TC information. This paper systematically reviews the deep-learning frameworks used for TC information extraction and then gives two typical applications of deep-learning models for TC intensity and wind radius estimation. In addition, the authors present an outlook on the future perspectives of deep learning in TC information extraction.

摘要

热带气旋 (TC) 严重危害人类生命和财产安全, TC的实时监测一直是研究热点, 随着空间和传感器技术的发展, 卫星遥感已成为监测TC的主要手段. 此外, 深度学习具有卓越的数据挖掘能力, 在地球科学中的表现优于基于物理或统计的算法, 越来越多的深度学习算法被开发和应用于TC信息的提取, 本文系统地回顾了深度学习在TC信息提取中的应用, 并给出了深度学习模型在TC强度和风圈半径提取中的应用. 此外, 本文还展望了深度学习在TC信息提取中的应用前景.

Abstract Image

从卫星红外图像中提取热带气旋强度和风半径信息的深度学习方法综述
热带气旋严重危害人类生命和财产安全。高温天气的实时监测一直是气象研究的重点之一。随着空间技术和传感器技术的发展,卫星遥感已成为监测tc的主要手段。此外,凭借其优越的数据挖掘能力,深度学习在地球科学中比传统的物理或基于统计的算法显示出优势。因此,人们正在开发更多的深度学习算法,并将其应用于提取TC信息。本文系统回顾了用于TC信息提取的深度学习框架,并给出了深度学习模型在TC强度和风半径估计中的两种典型应用。此外,作者对深度学习在TC信息提取中的应用前景进行了展望。摘要热带气旋(TC)严重危害人类生命和财产安全,TC的实时监测一直是研究热点,随着空间和传感器技术的发展,卫星遥感已成为监测TC的主要手段。此外,深度学习具有卓越的数据挖掘能力,在地球科学中的表现优于基于物理或统计的算法,越来越多的深度学习算法被开发和应用于TC信息的提取,本文系统地回顾了深度学习在TC信息提取中的应用,并给出了深度学习模型在TC强度和风圈半径提取中的应用。“”“”“”“”“”“”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信