Solubilized Pancreatic Extracellular Matrix from Juvenile Pigs Protects Isolated Human Islets from Hypoxia-Induced Damage: A Viable Option for Clinical Islet Transplantation

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
H. Brandhorst, S. Krishtul, D. Brandhorst, L. Baruch, M. Machluf, P. Johnson
{"title":"Solubilized Pancreatic Extracellular Matrix from Juvenile Pigs Protects Isolated Human Islets from Hypoxia-Induced Damage: A Viable Option for Clinical Islet Transplantation","authors":"H. Brandhorst, S. Krishtul, D. Brandhorst, L. Baruch, M. Machluf, P. Johnson","doi":"10.1155/2023/7452682","DOIUrl":null,"url":null,"abstract":"The pancreatic extracellular matrix (ECM) is an enormously complex construct. Previous studies underline the challenges to identify the optimal combinations and ratios of individual ECM proteins for promoting survival and function of isolated and transplanted islets. This study aimed on assessing the efficiency of solubilized natural ECM extracted from juvenile pigs, an unlimited donor source. Isolated human islets were cultured under a hypoxic atmosphere (2% oxygen) in media supplemented with either solubilized porcine pancreatic ECM (ppECM) or a mixture of human ECM proteins composed of collagen-IV, laminin-521, and nidogen-1 (hEPM). Control islets were cultured under identical conditions without ECM-compounds. Reactive oxygen species production increased three-fold in controls but was reduced by hEPM or ppECM. Early apoptosis remained on preculture levels when islets were treated with hEPM or ppECM. Preculture viability was preserved when hEPM or ppECM was administered. Whilst controls failed to respond to glucose challenge, treatment with hEPM or ppECM preserved the physiological insulin response. In summary, overall survival was significantly highest in ppECM-treated islets. This study presents a new approach to protect human islets from hypoxia-induced damage by supplementing media with ppECM extracted from an unlimited donor source. The findings may also serve as starting point for a novel encapsulation technique to protect isolated human islets.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/7452682","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The pancreatic extracellular matrix (ECM) is an enormously complex construct. Previous studies underline the challenges to identify the optimal combinations and ratios of individual ECM proteins for promoting survival and function of isolated and transplanted islets. This study aimed on assessing the efficiency of solubilized natural ECM extracted from juvenile pigs, an unlimited donor source. Isolated human islets were cultured under a hypoxic atmosphere (2% oxygen) in media supplemented with either solubilized porcine pancreatic ECM (ppECM) or a mixture of human ECM proteins composed of collagen-IV, laminin-521, and nidogen-1 (hEPM). Control islets were cultured under identical conditions without ECM-compounds. Reactive oxygen species production increased three-fold in controls but was reduced by hEPM or ppECM. Early apoptosis remained on preculture levels when islets were treated with hEPM or ppECM. Preculture viability was preserved when hEPM or ppECM was administered. Whilst controls failed to respond to glucose challenge, treatment with hEPM or ppECM preserved the physiological insulin response. In summary, overall survival was significantly highest in ppECM-treated islets. This study presents a new approach to protect human islets from hypoxia-induced damage by supplementing media with ppECM extracted from an unlimited donor source. The findings may also serve as starting point for a novel encapsulation technique to protect isolated human islets.
幼年猪溶解胰腺细胞外基质保护离体胰岛免受缺氧损伤:临床胰岛移植的可行选择
胰腺细胞外基质(ECM)是一个极其复杂的结构。先前的研究强调了确定个体ECM蛋白的最佳组合和比例以促进分离和移植胰岛的存活和功能的挑战。本研究旨在评估从仔猪(一种无限供体来源)中提取的可溶性天然ECM的效率。分离的人胰岛在低氧环境(2%氧气)下培养,培养基中添加溶解的猪胰腺ECM (ppECM)或由胶原- iv、层粘胶蛋白-521和氮化原-1 (hEPM)组成的人胰腺ECM蛋白的混合物。对照胰岛在相同条件下培养,不含ecm化合物。对照组的活性氧产量增加了三倍,而hEPM或ppECM则减少了活性氧的产量。当用hEPM或ppECM处理胰岛时,早期细胞凋亡保持在培养前水平。hEPM或ppECM均能保持培养前活力。虽然对照组对葡萄糖挑战没有反应,但hEPM或ppECM治疗保留了生理胰岛素反应。总之,ppecm治疗的胰岛总生存率显著最高。本研究提出了一种新的方法,通过补充从无限供体来源提取的ppECM来保护人类胰岛免受缺氧引起的损伤。这些发现也可以作为一种新的封装技术的起点,以保护分离的人类胰岛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信