Riley E. Lewis, Cheng-Hsin Huang, Jason C. White and Christy L. Haynes*,
{"title":"Using 19F NMR to Investigate Cationic Carbon Dot Association with Per- and Polyfluoroalkyl Substances (PFAS)","authors":"Riley E. Lewis, Cheng-Hsin Huang, Jason C. White and Christy L. Haynes*, ","doi":"10.1021/acsnanoscienceau.3c00022","DOIUrl":null,"url":null,"abstract":"<p >There is much concern about per- and polyfluoroalkyl substances (PFAS) based on their environmental persistence and toxicity, resulting in an urgent need for remediation technologies. This study focused on determining if nanoscale polymeric carbon dots are a viable sorbent material for PFAS and developing fluorine nuclear magnetic resonance spectroscopy (<sup>19</sup>F NMR) methods to probe interactions between carbon dots and PFAS at the molecular scale. Positively charged carbon dots (PEI-CDs) were synthesized using branched polyethyleneimine to target anionic PFAS by promoting electrostatic interactions. PEI-CDs were exposed to perfluorooctanoic acid (PFOA) to assess their potential as a PFAS sorbent material. After exposure to PFOA, the average size of the PEI-CDs increased (1.6 ± 0.5 to 7.8 ± 1.8 nm) and the surface charge decreased (+38.6 ± 1.1 to +26.4 ± 0.8 mV), both of which are consistent with contaminant sorption. <sup>19</sup>F NMR methods were developed to gain further insight into PEI-CD affinity toward PFAS without any complex sample preparation. Changes in PFOA peak intensity and chemical shift were monitored at various PEI-CD concentrations to establish binding curves and determine the chemical exchange regime. <sup>19</sup>F NMR spectral analysis indicates slow-intermediate chemical exchange between PFOA and CDs, demonstrating a high-affinity interaction. The α-fluorine had the greatest change in chemical shift and highest affinity, suggesting electrostatic interactions are the dominant sorption mechanism. PEI-CDs demonstrated affinity for a wide range of analytes when exposed to a mixture of 24-PFAS, with a slight preference toward perfluoroalkyl sulfonates. Overall, this study shows that PEI-CDs are an effective PFAS sorbent material and establishes <sup>19</sup>F NMR as a suitable method to screen for novel sorbent materials and elucidate interaction mechanisms.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 5","pages":"408–417"},"PeriodicalIF":4.8000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is much concern about per- and polyfluoroalkyl substances (PFAS) based on their environmental persistence and toxicity, resulting in an urgent need for remediation technologies. This study focused on determining if nanoscale polymeric carbon dots are a viable sorbent material for PFAS and developing fluorine nuclear magnetic resonance spectroscopy (19F NMR) methods to probe interactions between carbon dots and PFAS at the molecular scale. Positively charged carbon dots (PEI-CDs) were synthesized using branched polyethyleneimine to target anionic PFAS by promoting electrostatic interactions. PEI-CDs were exposed to perfluorooctanoic acid (PFOA) to assess their potential as a PFAS sorbent material. After exposure to PFOA, the average size of the PEI-CDs increased (1.6 ± 0.5 to 7.8 ± 1.8 nm) and the surface charge decreased (+38.6 ± 1.1 to +26.4 ± 0.8 mV), both of which are consistent with contaminant sorption. 19F NMR methods were developed to gain further insight into PEI-CD affinity toward PFAS without any complex sample preparation. Changes in PFOA peak intensity and chemical shift were monitored at various PEI-CD concentrations to establish binding curves and determine the chemical exchange regime. 19F NMR spectral analysis indicates slow-intermediate chemical exchange between PFOA and CDs, demonstrating a high-affinity interaction. The α-fluorine had the greatest change in chemical shift and highest affinity, suggesting electrostatic interactions are the dominant sorption mechanism. PEI-CDs demonstrated affinity for a wide range of analytes when exposed to a mixture of 24-PFAS, with a slight preference toward perfluoroalkyl sulfonates. Overall, this study shows that PEI-CDs are an effective PFAS sorbent material and establishes 19F NMR as a suitable method to screen for novel sorbent materials and elucidate interaction mechanisms.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.