{"title":"Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism","authors":"Qianru Wang, Jaysree Pan, Jianping Guo, Heine Anton Hansen, Hua Xie, Ling Jiang, Lei Hua, Haiyang Li, Yeqin Guan, Peikun Wang, Wenbo Gao, Lin Liu, Hujun Cao, Zhitao Xiong, Tejs Vegge, Ping Chen","doi":"10.1038/s41929-021-00698-8","DOIUrl":null,"url":null,"abstract":"Ammonia is the feedstock for nitrogen fertilizers and a potential carbon-free energy carrier; however, its production is highly energy intensive. Conventional heterogeneous catalysts based on metallic iron or ruthenium mediate dinitrogen dissociation and hydrogenation through a relatively energy-expensive pathway. Here we report the ternary ruthenium complex hydrides Li4RuH6 and Ba2RuH6 as an alternative class of catalysts, composed of electron- and hydrogen-rich [RuH6] anionic centres, for non-dissociative dinitrogen reduction, where hydridic hydrogen transports electrons and protons between the centres, and the Li/Ba cations stabilize NxHy (x = 0–2, y = 0–3) intermediates. The dynamic and synergistic involvement of all the components of the ternary complex hydrides facilitates an associative reaction mechanism with a narrow energy span and perfectly balanced kinetic barriers for the multistep process, leading to ammonia production from N2 + H2 with superior kinetics under mild conditions. The mechanism of ammonia synthesis on traditional iron or ruthenium catalysts features a high energetic span. Here, the authors introduce ternary ruthenium complex hydrides of lithium and barium that can activate dinitrogen via a lower-energy path, resulting in the highly efficient production of ammonia under milder conditions.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"4 11","pages":"959-967"},"PeriodicalIF":42.8000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-021-00698-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 34
Abstract
Ammonia is the feedstock for nitrogen fertilizers and a potential carbon-free energy carrier; however, its production is highly energy intensive. Conventional heterogeneous catalysts based on metallic iron or ruthenium mediate dinitrogen dissociation and hydrogenation through a relatively energy-expensive pathway. Here we report the ternary ruthenium complex hydrides Li4RuH6 and Ba2RuH6 as an alternative class of catalysts, composed of electron- and hydrogen-rich [RuH6] anionic centres, for non-dissociative dinitrogen reduction, where hydridic hydrogen transports electrons and protons between the centres, and the Li/Ba cations stabilize NxHy (x = 0–2, y = 0–3) intermediates. The dynamic and synergistic involvement of all the components of the ternary complex hydrides facilitates an associative reaction mechanism with a narrow energy span and perfectly balanced kinetic barriers for the multistep process, leading to ammonia production from N2 + H2 with superior kinetics under mild conditions. The mechanism of ammonia synthesis on traditional iron or ruthenium catalysts features a high energetic span. Here, the authors introduce ternary ruthenium complex hydrides of lithium and barium that can activate dinitrogen via a lower-energy path, resulting in the highly efficient production of ammonia under milder conditions.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.