A Note on Comparing the Bifactor and Second-Order Factor Models: Is the Bayesian Information Criterion a Routinely Dependable Index for Model Selection?

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-04-01 Epub Date: 2023-04-21 DOI:10.1177/00131644231166348
Tenko Raykov, Christine DiStefano, Lisa Calvocoressi
{"title":"A Note on Comparing the Bifactor and Second-Order Factor Models: Is the Bayesian Information Criterion a Routinely Dependable Index for Model Selection?","authors":"Tenko Raykov, Christine DiStefano, Lisa Calvocoressi","doi":"10.1177/00131644231166348","DOIUrl":null,"url":null,"abstract":"<p><p>This note demonstrates that the widely used Bayesian Information Criterion (BIC) need not be generally viewed as a routinely dependable index for model selection when the bifactor and second-order factor models are examined as rival means for data description and explanation. To this end, we use an empirically relevant setting with multidimensional measuring instrument components, where the bifactor model is found consistently inferior to the second-order model in terms of the BIC even though the data on a large number of replications at different sample sizes were generated following the bifactor model. We therefore caution researchers that routine reliance on the BIC for the purpose of discriminating between these two widely used models may not always lead to correct decisions with respect to model choice.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644231166348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This note demonstrates that the widely used Bayesian Information Criterion (BIC) need not be generally viewed as a routinely dependable index for model selection when the bifactor and second-order factor models are examined as rival means for data description and explanation. To this end, we use an empirically relevant setting with multidimensional measuring instrument components, where the bifactor model is found consistently inferior to the second-order model in terms of the BIC even though the data on a large number of replications at different sample sizes were generated following the bifactor model. We therefore caution researchers that routine reliance on the BIC for the purpose of discriminating between these two widely used models may not always lead to correct decisions with respect to model choice.

双因子模型与二阶因子模型比较注:贝叶斯信息准则是模型选择的常规可靠指标吗?
本文表明,当双因子和二阶因子模型作为数据描述和解释的竞争手段进行检验时,广泛使用的贝叶斯信息准则(BIC)通常不需要被视为模型选择的常规可靠指标。为此,我们使用具有多维测量仪器组件的经验相关设置,其中发现双因素模型在BIC方面始终不如二阶模型,即使在不同样本量的大量重复上的数据是根据双因素模型生成的。因此,我们提醒研究人员,为了区分这两种广泛使用的模型,常规依赖BIC可能并不总是导致关于模型选择的正确决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信