A novel adaptive window based technique for T wave detection and delineation in the ECG

IF 1.2 Q3 Computer Science
J. Rahul, Marpe Sora
{"title":"A novel adaptive window based technique for T wave detection and delineation in the ECG","authors":"J. Rahul, Marpe Sora","doi":"10.1515/bams-2019-0064","DOIUrl":null,"url":null,"abstract":"Abstract The electrocardiogram (ECG) morphology determines the overall activity of the heart and is the most widely used tool in the diagnostic processes. T wave is a crucial wave component that reveals very useful information regarding various cardiac disorders. In this paper we have proposed a novel T wave detection technique based on adaptive window and simple decision rule. The proposed technique uses two-stage median filters followed by the Savitzky-Golay filter at the pre-processing stage to remove the noises in the ECG signal. The QRS complex is detected for locating the T wave as a reference in one ECG cycle. An R-R interval based window is considered for detecting the T wave, and decision logic depends on the iso-electric line value. The proposed technique is tested on the QT database and self-recorded dataset for its performance evaluation. In the present work, the results achieved for T wave detection sensitivity (Se), positive predictivity (+P), detection error rate (DER), and accuracy (Acc) on the QT database are Se = 97.57%, +P = 99.63%, DER = 2.78%, and Acc = 97.22% with an average time error of (3.468 ± 5.732) ms. The proposed technique shows Se = 99.94%, +P = 99.94%, DER = 0.01%, and Acc = 99.89% on the self-recorded dataset. The proposed technique is also capable of detecting both the upward and downward T wave efficiently in the ECG signal.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bams-2019-0064","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bams-2019-0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract The electrocardiogram (ECG) morphology determines the overall activity of the heart and is the most widely used tool in the diagnostic processes. T wave is a crucial wave component that reveals very useful information regarding various cardiac disorders. In this paper we have proposed a novel T wave detection technique based on adaptive window and simple decision rule. The proposed technique uses two-stage median filters followed by the Savitzky-Golay filter at the pre-processing stage to remove the noises in the ECG signal. The QRS complex is detected for locating the T wave as a reference in one ECG cycle. An R-R interval based window is considered for detecting the T wave, and decision logic depends on the iso-electric line value. The proposed technique is tested on the QT database and self-recorded dataset for its performance evaluation. In the present work, the results achieved for T wave detection sensitivity (Se), positive predictivity (+P), detection error rate (DER), and accuracy (Acc) on the QT database are Se = 97.57%, +P = 99.63%, DER = 2.78%, and Acc = 97.22% with an average time error of (3.468 ± 5.732) ms. The proposed technique shows Se = 99.94%, +P = 99.94%, DER = 0.01%, and Acc = 99.89% on the self-recorded dataset. The proposed technique is also capable of detecting both the upward and downward T wave efficiently in the ECG signal.
一种新的基于自适应窗口的心电T波检测和描绘技术
摘要心电图(ECG)形态决定了心脏的整体活动,是诊断过程中使用最广泛的工具。T波是一种重要的波成分,它揭示了有关各种心脏疾病的非常有用的信息。本文提出了一种新的基于自适应窗口和简单判定规则的T波检测技术。所提出的技术使用两级中值滤波器,然后在预处理阶段使用Savitzky Golay滤波器来去除ECG信号中的噪声。QRS复合波被检测用于定位作为一个ECG周期中的参考的T波。考虑了一个基于R-R间隔的窗口来检测T波,并且决策逻辑取决于等值线值。所提出的技术在QT数据库和自记录数据集上进行了测试,以进行性能评估。在本工作中,QT数据库中T波检测灵敏度(Se)、正预测性(+P)、检测误差率(DER)和准确度(Acc)的结果分别为Se=97.57%、+P=99.63%、DER=2.78%和Acc=97.22%,平均时间误差为(3.468±5.732)ms。所提出的技术显示Se=99.94%、+P=99.94%和DER=0.01%,在自记录数据集上,Acc=99.89%。所提出的技术还能够有效地检测ECG信号中的向上和向下T波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bio-Algorithms and Med-Systems
Bio-Algorithms and Med-Systems MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
3.80
自引率
0.00%
发文量
3
期刊介绍: The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信