{"title":"A novel adaptive window based technique for T wave detection and delineation in the ECG","authors":"J. Rahul, Marpe Sora","doi":"10.1515/bams-2019-0064","DOIUrl":null,"url":null,"abstract":"Abstract The electrocardiogram (ECG) morphology determines the overall activity of the heart and is the most widely used tool in the diagnostic processes. T wave is a crucial wave component that reveals very useful information regarding various cardiac disorders. In this paper we have proposed a novel T wave detection technique based on adaptive window and simple decision rule. The proposed technique uses two-stage median filters followed by the Savitzky-Golay filter at the pre-processing stage to remove the noises in the ECG signal. The QRS complex is detected for locating the T wave as a reference in one ECG cycle. An R-R interval based window is considered for detecting the T wave, and decision logic depends on the iso-electric line value. The proposed technique is tested on the QT database and self-recorded dataset for its performance evaluation. In the present work, the results achieved for T wave detection sensitivity (Se), positive predictivity (+P), detection error rate (DER), and accuracy (Acc) on the QT database are Se = 97.57%, +P = 99.63%, DER = 2.78%, and Acc = 97.22% with an average time error of (3.468 ± 5.732) ms. The proposed technique shows Se = 99.94%, +P = 99.94%, DER = 0.01%, and Acc = 99.89% on the self-recorded dataset. The proposed technique is also capable of detecting both the upward and downward T wave efficiently in the ECG signal.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bams-2019-0064","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bams-2019-0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract The electrocardiogram (ECG) morphology determines the overall activity of the heart and is the most widely used tool in the diagnostic processes. T wave is a crucial wave component that reveals very useful information regarding various cardiac disorders. In this paper we have proposed a novel T wave detection technique based on adaptive window and simple decision rule. The proposed technique uses two-stage median filters followed by the Savitzky-Golay filter at the pre-processing stage to remove the noises in the ECG signal. The QRS complex is detected for locating the T wave as a reference in one ECG cycle. An R-R interval based window is considered for detecting the T wave, and decision logic depends on the iso-electric line value. The proposed technique is tested on the QT database and self-recorded dataset for its performance evaluation. In the present work, the results achieved for T wave detection sensitivity (Se), positive predictivity (+P), detection error rate (DER), and accuracy (Acc) on the QT database are Se = 97.57%, +P = 99.63%, DER = 2.78%, and Acc = 97.22% with an average time error of (3.468 ± 5.732) ms. The proposed technique shows Se = 99.94%, +P = 99.94%, DER = 0.01%, and Acc = 99.89% on the self-recorded dataset. The proposed technique is also capable of detecting both the upward and downward T wave efficiently in the ECG signal.
期刊介绍:
The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.