{"title":"Experimental investigation of the alternate recurrence of quasi-static and dynamic crack propagation in PMMA","authors":"Raphael Heinzmann, Rian Seghir, Syed Yasir Alam, Julien Réthoré","doi":"10.1007/s10704-023-00717-8","DOIUrl":null,"url":null,"abstract":"<div><p>The alternate (stick-slip) cracking phenomenon in Poly(methyl methacrylate) (PMMA) was investigated using high-speed imaging and digital image correlation (DIC). PMMA is known to show a great variety of fracture behaviors by even small changes in loading conditions. With TDCB-shaped samples and under a range of constant extension rates, the phenomenon of alternate cracking is observed. Here, loops of successive quasi-static and dynamic crack propagation are found within a single fracture experiment suggesting a ‘forbidden’ velocity regime. For the first time, such material/structural cyclic fracture behavior is examined through the lens of linear elastic fracture mechanics (LEFM) by using in-situ High-Speed (HS) DIC. Energy release rates and crack velocities during fracture experiments are derived from full-field measurements using Williams’ series expansion. Fracture surfaces of post-mortem samples have been systematically analyzed using optical microscopy. The investigation of the actual limits of the ‘forbidden’ velocity regime in terms of critical velocity and energy release rate in relation to post-mortem crack length features is achieved by holistic experimental data on alternate cracking. This work provides key experimental data regarding the improved understanding of a unified theoretical framework of crack instabilities.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"242 2","pages":"227 - 245"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00717-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The alternate (stick-slip) cracking phenomenon in Poly(methyl methacrylate) (PMMA) was investigated using high-speed imaging and digital image correlation (DIC). PMMA is known to show a great variety of fracture behaviors by even small changes in loading conditions. With TDCB-shaped samples and under a range of constant extension rates, the phenomenon of alternate cracking is observed. Here, loops of successive quasi-static and dynamic crack propagation are found within a single fracture experiment suggesting a ‘forbidden’ velocity regime. For the first time, such material/structural cyclic fracture behavior is examined through the lens of linear elastic fracture mechanics (LEFM) by using in-situ High-Speed (HS) DIC. Energy release rates and crack velocities during fracture experiments are derived from full-field measurements using Williams’ series expansion. Fracture surfaces of post-mortem samples have been systematically analyzed using optical microscopy. The investigation of the actual limits of the ‘forbidden’ velocity regime in terms of critical velocity and energy release rate in relation to post-mortem crack length features is achieved by holistic experimental data on alternate cracking. This work provides key experimental data regarding the improved understanding of a unified theoretical framework of crack instabilities.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.