{"title":"Integrated Fault Identification in Granite Tunnel Based on the Analysis of Structural and Mineral Characteristics of Rock Masses: A Case Study","authors":"P. Lin, R. Shao, Zhen-hao Xu, T. Yu","doi":"10.1144/qjegh2022-053","DOIUrl":null,"url":null,"abstract":"Tunnels are underground structures that are widely used in geology, mining, and other related fields. Given the fact that many severe underground structure instabilities are found to be closely associated with fault systems present nearby, an integrated fault identification method, namely the 3M method, is proposed based on analyzing the macrostructure, mineral characteristics, and microstructural of rock masses in the tunnel. This method comprises three steps, and each step corresponds to one “M”: macrostructure identification, mineral analysis, and microstructure identification. First, the macrostructure is investigated to determine whether there is a fault-related feature in the tunnel, e.g., a slickenside. Second, mineral analysis infers the spatial extent of the fault from changes to the types and compositions of minerals. Third, the microstructure is investigated to determine the fault-related deformation mechanism in the tunnel, e.g., deformation twinning. Adopting the proposed method reduces the subjective influence of geological engineers and improves the accuracy of fault identification via traditional geological analysis. The results of this study provide new insight into tunnel excavation and support design.","PeriodicalId":20937,"journal":{"name":"Quarterly Journal of Engineering Geology and Hydrogeology","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Engineering Geology and Hydrogeology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/qjegh2022-053","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tunnels are underground structures that are widely used in geology, mining, and other related fields. Given the fact that many severe underground structure instabilities are found to be closely associated with fault systems present nearby, an integrated fault identification method, namely the 3M method, is proposed based on analyzing the macrostructure, mineral characteristics, and microstructural of rock masses in the tunnel. This method comprises three steps, and each step corresponds to one “M”: macrostructure identification, mineral analysis, and microstructure identification. First, the macrostructure is investigated to determine whether there is a fault-related feature in the tunnel, e.g., a slickenside. Second, mineral analysis infers the spatial extent of the fault from changes to the types and compositions of minerals. Third, the microstructure is investigated to determine the fault-related deformation mechanism in the tunnel, e.g., deformation twinning. Adopting the proposed method reduces the subjective influence of geological engineers and improves the accuracy of fault identification via traditional geological analysis. The results of this study provide new insight into tunnel excavation and support design.
期刊介绍:
Quarterly Journal of Engineering Geology and Hydrogeology is owned by the Geological Society of London and published by the Geological Society Publishing House.
Quarterly Journal of Engineering Geology & Hydrogeology (QJEGH) is an established peer reviewed international journal featuring papers on geology as applied to civil engineering mining practice and water resources. Papers are invited from, and about, all areas of the world on engineering geology and hydrogeology topics. This includes but is not limited to: applied geophysics, engineering geomorphology, environmental geology, hydrogeology, groundwater quality, ground source heat, contaminated land, waste management, land use planning, geotechnics, rock mechanics, geomaterials and geological hazards.
The journal publishes the prestigious Glossop and Ineson lectures, research papers, case studies, review articles, technical notes, photographic features, thematic sets, discussion papers, editorial opinion and book reviews.