Shuqin He , Renhuan Zhu , Zicheng Zheng , Tingxuan Li
{"title":"The effect of tea plantation age on soil water-stable aggregates and aggregate-associated carbohydrate in southwestern China","authors":"Shuqin He , Renhuan Zhu , Zicheng Zheng , Tingxuan Li","doi":"10.1016/j.iswcr.2022.11.004","DOIUrl":null,"url":null,"abstract":"<div><p>Soil carbohydrates constitute an important component of soil organic matter (SOM), and substantially contribute to the stabilization of soil aggregates. Here, we aimed to investigate the distribution of water-stable aggregates and carbohydrates within water-stable aggregates of soil in tea plantations located in Zhongfeng Township of Mingshan County, Sichuan, which is in southwest China. Samples were collected from tea plantations of different ages (18, 25, 33, and 55 years old) and an area of abandoned land was used as a control(CK). We also examined correlations between soil carbohydrates fractions and aggregate stability. The results showed that the mean weight diameter (MWD) of soil aggregates in the tea plantations was significantly higher than that the control. Furthermore, the soil aggregate stability was significantly enhanced in tea plantations, with the 25-year-old plantation showing the most pronounced effect. Soils in the plantations were also characterized by higher concentrated acid-extracted carbohydrate content, and carbohydrate content in both surface and sub-surface layers were higher in the 25-year-old plantation. We also detected a significant positive correlation between the carbohydrate content of soil and MWD after tea plantation (<em>P</em> < 0.01). Notably, the association between dilute-acid extracted carbohydrate and the aggregate stability showed the highest correlation, indicating this carbohydrate fraction could be used as an index to reflect changes in soil quality during tea plantation development. We should develop a potential fertilisation programme to maintain SOM- Carbohydrates within aggregates and the appropriate pH for preventing soil structure degradation after 25 years of tea planting.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"11 2","pages":"Pages 393-401"},"PeriodicalIF":7.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633922000892","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil carbohydrates constitute an important component of soil organic matter (SOM), and substantially contribute to the stabilization of soil aggregates. Here, we aimed to investigate the distribution of water-stable aggregates and carbohydrates within water-stable aggregates of soil in tea plantations located in Zhongfeng Township of Mingshan County, Sichuan, which is in southwest China. Samples were collected from tea plantations of different ages (18, 25, 33, and 55 years old) and an area of abandoned land was used as a control(CK). We also examined correlations between soil carbohydrates fractions and aggregate stability. The results showed that the mean weight diameter (MWD) of soil aggregates in the tea plantations was significantly higher than that the control. Furthermore, the soil aggregate stability was significantly enhanced in tea plantations, with the 25-year-old plantation showing the most pronounced effect. Soils in the plantations were also characterized by higher concentrated acid-extracted carbohydrate content, and carbohydrate content in both surface and sub-surface layers were higher in the 25-year-old plantation. We also detected a significant positive correlation between the carbohydrate content of soil and MWD after tea plantation (P < 0.01). Notably, the association between dilute-acid extracted carbohydrate and the aggregate stability showed the highest correlation, indicating this carbohydrate fraction could be used as an index to reflect changes in soil quality during tea plantation development. We should develop a potential fertilisation programme to maintain SOM- Carbohydrates within aggregates and the appropriate pH for preventing soil structure degradation after 25 years of tea planting.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research