Robert B Olsen, Larry L Orr, Stephen H Bell, Elizabeth Petraglia, Elena Badillo-Goicoechea, Atsushi Miyaoka, Elizabeth A Stuart
{"title":"Using a Multi-Site RCT to Predict Impacts for a Single Site: Do Better Data and Methods Yield More Accurate Predictions?","authors":"Robert B Olsen, Larry L Orr, Stephen H Bell, Elizabeth Petraglia, Elena Badillo-Goicoechea, Atsushi Miyaoka, Elizabeth A Stuart","doi":"10.1080/19345747.2023.2180464","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-site randomized controlled trials (RCTs) provide unbiased estimates of the average impact in the study sample. However, their ability to accurately predict the impact for individual sites outside the study sample, to inform local policy decisions, is largely unknown. To extend prior research on this question, we analyzed six multi-site RCTs and tested modern prediction methods-lasso regression and Bayesian Additive Regression Trees (BART)-using a wide range of moderator variables. The main study findings are that: (1) all of the methods yielded accurate impact predictions when the variation in impacts across sites was close to zero (as expected); (2) none of the methods yielded accurate impact predictions when the variation in impacts across sites was substantial; and (3) BART typically produced \"less inaccurate\" predictions than lasso regression or than the Sample Average Treatment Effect. These results raise concerns that when the impact of an intervention varies considerably across sites, statistical modelling using the data commonly collected by multi-site RCTs will be insufficient to explain the variation in impacts across sites and accurately predict impacts for individual sites.</p>","PeriodicalId":47260,"journal":{"name":"Journal of Research on Educational Effectiveness","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914338/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research on Educational Effectiveness","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1080/19345747.2023.2180464","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-site randomized controlled trials (RCTs) provide unbiased estimates of the average impact in the study sample. However, their ability to accurately predict the impact for individual sites outside the study sample, to inform local policy decisions, is largely unknown. To extend prior research on this question, we analyzed six multi-site RCTs and tested modern prediction methods-lasso regression and Bayesian Additive Regression Trees (BART)-using a wide range of moderator variables. The main study findings are that: (1) all of the methods yielded accurate impact predictions when the variation in impacts across sites was close to zero (as expected); (2) none of the methods yielded accurate impact predictions when the variation in impacts across sites was substantial; and (3) BART typically produced "less inaccurate" predictions than lasso regression or than the Sample Average Treatment Effect. These results raise concerns that when the impact of an intervention varies considerably across sites, statistical modelling using the data commonly collected by multi-site RCTs will be insufficient to explain the variation in impacts across sites and accurately predict impacts for individual sites.
期刊介绍:
As the flagship publication for the Society for Research on Educational Effectiveness, the Journal of Research on Educational Effectiveness (JREE) publishes original articles from the multidisciplinary community of researchers who are committed to applying principles of scientific inquiry to the study of educational problems. Articles published in JREE should advance our knowledge of factors important for educational success and/or improve our ability to conduct further disciplined studies of pressing educational problems. JREE welcomes manuscripts that fit into one of the following categories: (1) intervention, evaluation, and policy studies; (2) theory, contexts, and mechanisms; and (3) methodological studies. The first category includes studies that focus on process and implementation and seek to demonstrate causal claims in educational research. The second category includes meta-analyses and syntheses, descriptive studies that illuminate educational conditions and contexts, and studies that rigorously investigate education processes and mechanism. The third category includes studies that advance our understanding of theoretical and technical features of measurement and research design and describe advances in data analysis and data modeling. To establish a stronger connection between scientific evidence and educational practice, studies submitted to JREE should focus on pressing problems found in classrooms and schools. Studies that help advance our understanding and demonstrate effectiveness related to challenges in reading, mathematics education, and science education are especially welcome as are studies related to cognitive functions, social processes, organizational factors, and cultural features that mediate and/or moderate critical educational outcomes. On occasion, invited responses to JREE articles and rejoinders to those responses will be included in an issue.