Computational Chemistry to Repurposing Drugs for the Control of COVID-19

Majid Hassanzadeganroudsari, Amirmasoud Ahmadi, Niloufar Rashidi, Md Kamal Hossain, Amanda Habib, V. Apostolopoulos
{"title":"Computational Chemistry to Repurposing Drugs for the Control of COVID-19","authors":"Majid Hassanzadeganroudsari, Amirmasoud Ahmadi, Niloufar Rashidi, Md Kamal Hossain, Amanda Habib, V. Apostolopoulos","doi":"10.3390/biologics1020007","DOIUrl":null,"url":null,"abstract":"Thus far, in 2021, 219 countries with over 175 million people have been infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a positive sense, single-stranded RNA virus, and is the causal agent for coronavirus disease (COVID-19). Due to the urgency of the situation, virtual screening as a computational modeling method offers a fast and effective modality of identifying drugs that may be effective against SARS-CoV-2. There has been an overwhelming abundance of molecular docking against SARS-CoV-2 in the last year. Due to the massive volume of computational studies, this systematic review has been created to evaluate and summarize the findings of existing studies. Herein, we report on computational articles of drugs which target, (1) viral protease, (2) Spike protein-ACE 2 interaction, (3) RNA-dependent RNA polymerase, and (4) other proteins and nonstructural proteins of SARS-CoV-2. Based on the studies presented, there are 55 identified natural or drug compounds with potential anti-viral activity. The next step is to show anti-viral activity in vitro and translation to determine effectiveness into human clinical trials.","PeriodicalId":93526,"journal":{"name":"Biologics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/biologics1020007","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biologics1020007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Thus far, in 2021, 219 countries with over 175 million people have been infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a positive sense, single-stranded RNA virus, and is the causal agent for coronavirus disease (COVID-19). Due to the urgency of the situation, virtual screening as a computational modeling method offers a fast and effective modality of identifying drugs that may be effective against SARS-CoV-2. There has been an overwhelming abundance of molecular docking against SARS-CoV-2 in the last year. Due to the massive volume of computational studies, this systematic review has been created to evaluate and summarize the findings of existing studies. Herein, we report on computational articles of drugs which target, (1) viral protease, (2) Spike protein-ACE 2 interaction, (3) RNA-dependent RNA polymerase, and (4) other proteins and nonstructural proteins of SARS-CoV-2. Based on the studies presented, there are 55 identified natural or drug compounds with potential anti-viral activity. The next step is to show anti-viral activity in vitro and translation to determine effectiveness into human clinical trials.
计算化学重新利用药物控制新冠肺炎
到目前为止,2021年有219个国家和超过1.75亿人感染了严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)。SARS-CoV-2是一种积极意义上的单链RNA病毒,是冠状病毒病(COVID-19)的致病因子。鉴于形势的紧迫性,虚拟筛选作为一种计算建模方法,为识别可能对SARS-CoV-2有效的药物提供了一种快速有效的方式。去年,针对SARS-CoV-2的分子对接出现了压倒性的丰富。由于大量的计算研究,本系统综述的创建是为了评估和总结现有研究的发现。在此,我们报告了针对(1)病毒蛋白酶,(2)刺突蛋白- ace 2相互作用,(3)RNA依赖的RNA聚合酶,以及(4)SARS-CoV-2的其他蛋白质和非结构蛋白的药物的计算文章。根据所提出的研究,有55种已确定的天然或药物化合物具有潜在的抗病毒活性。下一步是在体外展示抗病毒活性,并将其转化为人体临床试验,以确定有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信