{"title":"Convergence Results for Nonlinear Sampling Kantorovich Operators in Modular Spaces","authors":"D. Costarelli, Maria Gabriella Natale, G. Vinti","doi":"10.1080/01630563.2023.2241143","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper, convergence in modular spaces is investigated for a class of nonlinear discrete operators, namely the nonlinear multivariate sampling Kantorovich operators. The convergence results in the Musielak-Orlicz spaces, in the weighted Orlicz spaces, and in the Orlicz spaces follow as particular cases. Even more, spaces of functions equipped by modulars without an integral representation are presented and discussed.","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"44 1","pages":"1276 - 1299"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Functional Analysis and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2241143","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract In the present paper, convergence in modular spaces is investigated for a class of nonlinear discrete operators, namely the nonlinear multivariate sampling Kantorovich operators. The convergence results in the Musielak-Orlicz spaces, in the weighted Orlicz spaces, and in the Orlicz spaces follow as particular cases. Even more, spaces of functions equipped by modulars without an integral representation are presented and discussed.
期刊介绍:
Numerical Functional Analysis and Optimization is a journal aimed at development and applications of functional analysis and operator-theoretic methods in numerical analysis, optimization and approximation theory, control theory, signal and image processing, inverse and ill-posed problems, applied and computational harmonic analysis, operator equations, and nonlinear functional analysis. Not all high-quality papers within the union of these fields are within the scope of NFAO. Generalizations and abstractions that significantly advance their fields and reinforce the concrete by providing new insight and important results for problems arising from applications are welcome. On the other hand, technical generalizations for their own sake with window dressing about applications, or variants of known results and algorithms, are not suitable for this journal.
Numerical Functional Analysis and Optimization publishes about 70 papers per year. It is our current policy to limit consideration to one submitted paper by any author/co-author per two consecutive years. Exception will be made for seminal papers.