{"title":"Ni/NiO Nanocomposites with Rich Oxygen Vacancies as High-Performance Catalysts for Nitrophenol Hydrogenation","authors":"Jun Zhou, Yue Zhang, Song Li, Jing Chen","doi":"10.3390/catal9110944","DOIUrl":null,"url":null,"abstract":"Heterogeneous catalysis often involves charge transfer between adsorbed molecules and the surface of catalyst, and thus their activity depends on the surface charge density. The efficiency of charge transfer could be optimized by adjusting the concentration of oxygen vacancies (Ov). In this work, hexagonal Ni(OH)2 nanoparticles were initially synthesized by a hydrothermal process using aluminum powder as the sacrificial agent, and were then converted into 2D Ni/NiO nanocomposites through in situ reduction in hydrogen flow. The oxygen vacancy concentration in the NiO nanosheet could be well-controlled by adjusting the reduction temperature. This resulted in strikingly high activities for hydrogenation of nitrophenol. The Ni/NiO nanocomposite could easily be recovered by a magnetic field for reuse. The present finding is beneficial for producing better hydrogenation catalysts and paves the way for the design of highly efficient catalysts.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/catal9110944","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal9110944","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 6
Abstract
Heterogeneous catalysis often involves charge transfer between adsorbed molecules and the surface of catalyst, and thus their activity depends on the surface charge density. The efficiency of charge transfer could be optimized by adjusting the concentration of oxygen vacancies (Ov). In this work, hexagonal Ni(OH)2 nanoparticles were initially synthesized by a hydrothermal process using aluminum powder as the sacrificial agent, and were then converted into 2D Ni/NiO nanocomposites through in situ reduction in hydrogen flow. The oxygen vacancy concentration in the NiO nanosheet could be well-controlled by adjusting the reduction temperature. This resulted in strikingly high activities for hydrogenation of nitrophenol. The Ni/NiO nanocomposite could easily be recovered by a magnetic field for reuse. The present finding is beneficial for producing better hydrogenation catalysts and paves the way for the design of highly efficient catalysts.
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.