A Tunable, Simplified Model for Biological Latch Mediated Spring Actuated Systems

IF 2.2 4区 生物学 Q2 BIOLOGY
Andrés Cook, Kaanthi Pandhigunta, Mason A. Acevedo, Adam Walker, Rosalie L. Didcock, Jackson T. Castro, Declan O’Neill, Raghav Acharya, M. S. Bhamla, Philip S. L. Anderson, M. Ilton
{"title":"A Tunable, Simplified Model for Biological Latch Mediated Spring Actuated Systems","authors":"Andrés Cook, Kaanthi Pandhigunta, Mason A. Acevedo, Adam Walker, Rosalie L. Didcock, Jackson T. Castro, Declan O’Neill, Raghav Acharya, M. S. Bhamla, Philip S. L. Anderson, M. Ilton","doi":"10.1101/2020.12.02.408740","DOIUrl":null,"url":null,"abstract":"We develop a model of latch-mediated spring actuated (LaMSA) systems relevant to comparative biomechanics and bioinspired design. The model contains five components: two motors (muscles), a spring, a latch, and a load mass. One motor loads the spring to store elastic energy and the second motor subsequently removes the latch, which releases the spring and causes movement of the load mass. We develop open-source software to accompany the model, which provides an extensible framework for simulating LaMSA systems. Output from the simulation includes information from the loading and release phases of motion, which can be used to calculate kinematic performance metrics that are important for biomechanical function. In parallel, we simulate a comparable, directly actuated system that uses the same motor and mass combinations as the LaMSA simulations. By rapidly iterating through biologically relevant input parameters to the model, simulated kinematic performance differences between LaMSA and directly actuated systems can be used to explore the evolutionary dynamics of biological LaMSA systems and uncover design principles for bioinspired LaMSA systems. As proof of principle of this concept, we compare a LaMSA simulation to a directly actuated simulation that includes a either Hill-type force-velocity trade-off or muscle activation dynamics, or both. For the biologically-relevant range of parameters explored, we find that the muscle force-velocity trade-off and muscle activation have similar effects on directly actuated performance. Including both of these dynamic muscle properties increases the accelerated mass range where a LaMSA system outperforms a directly actuated one.","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"4 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Organismal Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/2020.12.02.408740","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a model of latch-mediated spring actuated (LaMSA) systems relevant to comparative biomechanics and bioinspired design. The model contains five components: two motors (muscles), a spring, a latch, and a load mass. One motor loads the spring to store elastic energy and the second motor subsequently removes the latch, which releases the spring and causes movement of the load mass. We develop open-source software to accompany the model, which provides an extensible framework for simulating LaMSA systems. Output from the simulation includes information from the loading and release phases of motion, which can be used to calculate kinematic performance metrics that are important for biomechanical function. In parallel, we simulate a comparable, directly actuated system that uses the same motor and mass combinations as the LaMSA simulations. By rapidly iterating through biologically relevant input parameters to the model, simulated kinematic performance differences between LaMSA and directly actuated systems can be used to explore the evolutionary dynamics of biological LaMSA systems and uncover design principles for bioinspired LaMSA systems. As proof of principle of this concept, we compare a LaMSA simulation to a directly actuated simulation that includes a either Hill-type force-velocity trade-off or muscle activation dynamics, or both. For the biologically-relevant range of parameters explored, we find that the muscle force-velocity trade-off and muscle activation have similar effects on directly actuated performance. Including both of these dynamic muscle properties increases the accelerated mass range where a LaMSA system outperforms a directly actuated one.
生物锁存介导的弹簧驱动系统的可调简化模型
我们开发了一个锁存介导的弹簧驱动(LaMSA)系统模型,与比较生物力学和生物启发设计相关。该模型包含五个组件:两个马达(肌肉),一个弹簧,一个锁存器和一个负载质量。一个电机加载弹簧以存储弹性能量,第二个电机随后移开闩锁,从而释放弹簧并引起负载质量的运动。我们开发了开源软件来配合模型,它为模拟LaMSA系统提供了一个可扩展的框架。模拟的输出包括来自运动的加载和释放阶段的信息,这些信息可用于计算对生物力学功能很重要的运动学性能指标。同时,我们模拟了一个类似的直接驱动系统,该系统使用与LaMSA模拟相同的电机和质量组合。通过快速迭代模型的生物相关输入参数,模拟LaMSA与直接驱动系统之间的运动学性能差异,可以用于探索生物LaMSA系统的进化动力学,并揭示生物启发LaMSA系统的设计原则。为了证明这一概念的原理,我们将LaMSA模拟与直接驱动的模拟进行了比较,后者包括hill型力-速度权衡或肌肉激活动力学,或两者兼有。对于探索的生物学相关参数范围,我们发现肌肉力-速度权衡和肌肉激活对直接驱动的性能具有相似的影响。包括这两种动态肌肉特性增加了LaMSA系统优于直接驱动系统的加速质量范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
6.70%
发文量
48
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信