On the Set-Representable Orthomodular Posets that are Point-Distinguishing

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Dominika Burešová, Pavel Pták
{"title":"On the Set-Representable Orthomodular Posets that are Point-Distinguishing","authors":"Dominika Burešová,&nbsp;Pavel Pták","doi":"10.1007/s10773-023-05436-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let us denote by <span>\\(\\mathcal {S}\\mathcal {O}\\mathcal {M}\\mathcal {P}\\)</span> the class of all set-representable orthomodular posets and by <span>\\(\\mathcal {P}\\mathcal {D} \\mathcal {S}\\mathcal {O}\\mathcal {M}\\mathcal {P}\\)</span> those elements of <span>\\(\\mathcal {S}\\mathcal {O}\\mathcal {M}\\mathcal {P}\\)</span> in which any pair of points in the underlying set <i>P</i> can be distinguished by a set (i.e., <span>\\((P, \\mathcal {L}) \\in \\mathcal {P}\\mathcal {D} \\mathcal {S}\\mathcal {O}\\mathcal {M}\\mathcal {P}\\)</span> precisely when for any pair <span>\\(x, y \\in P\\)</span> there is a set <span>\\(A \\in \\mathcal {L}\\)</span> with <span>\\(x \\in A\\)</span> and <span>\\(y \\notin A\\)</span>). In this note we first construct, for each <span>\\((P, \\mathcal {L}) \\in \\mathcal {S}\\mathcal {O}\\mathcal {M}\\mathcal {P}\\)</span>, a point-distinguishing orthomodular poset that is isomorphic to <span>\\((P, \\mathcal {L})\\)</span>. We show that by using a generalized form of the Stone representation technique we also obtain point-distinguishing representations of <span>\\((P, \\mathcal {L})\\)</span>. We then prove that this technique gives us point-distinguishing representations on which all two-valued states are determined by points (all two-valued states are Dirac states). Since orthomodular posets may be regarded as abstract counterparts of event structures about quantum experiments, results of this work may have some relevance for the foundation of quantum mechanics.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"62 8","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10773-023-05436-3.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-023-05436-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Let us denote by \(\mathcal {S}\mathcal {O}\mathcal {M}\mathcal {P}\) the class of all set-representable orthomodular posets and by \(\mathcal {P}\mathcal {D} \mathcal {S}\mathcal {O}\mathcal {M}\mathcal {P}\) those elements of \(\mathcal {S}\mathcal {O}\mathcal {M}\mathcal {P}\) in which any pair of points in the underlying set P can be distinguished by a set (i.e., \((P, \mathcal {L}) \in \mathcal {P}\mathcal {D} \mathcal {S}\mathcal {O}\mathcal {M}\mathcal {P}\) precisely when for any pair \(x, y \in P\) there is a set \(A \in \mathcal {L}\) with \(x \in A\) and \(y \notin A\)). In this note we first construct, for each \((P, \mathcal {L}) \in \mathcal {S}\mathcal {O}\mathcal {M}\mathcal {P}\), a point-distinguishing orthomodular poset that is isomorphic to \((P, \mathcal {L})\). We show that by using a generalized form of the Stone representation technique we also obtain point-distinguishing representations of \((P, \mathcal {L})\). We then prove that this technique gives us point-distinguishing representations on which all two-valued states are determined by points (all two-valued states are Dirac states). Since orthomodular posets may be regarded as abstract counterparts of event structures about quantum experiments, results of this work may have some relevance for the foundation of quantum mechanics.

关于可点判别的集合可表示正交模位
让我们用\(\mathcal {S}\mathcal {O}\mathcal {M}\mathcal {P}\)表示所有集合可表示的正模偏序集的类,用\(\mathcal {P}\mathcal {D} \mathcal {S}\mathcal {O}\mathcal {M}\mathcal {P}\)表示\(\mathcal {S}\mathcal {O}\mathcal {M}\mathcal {P}\)的那些元素,在这些元素中,底层集合P中的任何点对都可以用一个集合来区分(即,\((P, \mathcal {L}) \in \mathcal {P}\mathcal {D} \mathcal {S}\mathcal {O}\mathcal {M}\mathcal {P}\)精确地说,对于任何对\(x, y \in P\),存在一个包含\(x \in A\)和\(y \notin A\)的集合\(A \in \mathcal {L}\))。在本文中,我们首先为每个\((P, \mathcal {L}) \in \mathcal {S}\mathcal {O}\mathcal {M}\mathcal {P}\)构造一个与\((P, \mathcal {L})\)同构的点区分正模偏序集。我们表明,通过使用Stone表示技术的广义形式,我们也获得了\((P, \mathcal {L})\)的点区分表示。然后,我们证明了该技术给出了所有两值状态都由点决定的点区分表示(所有两值状态都是狄拉克状态)。由于正模偏序集可以看作是量子实验事件结构的抽象对应物,因此本工作的结果可能与量子力学的基础有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信