FAHPBEP: A Fuzzy Analytic Hierarchy Process Framework in Text Classification

Q4 Engineering
R. Asgarnezhad, S. A. Monadjemi, M. Soltanaghaei
{"title":"FAHPBEP: A Fuzzy Analytic Hierarchy Process Framework in Text Classification","authors":"R. Asgarnezhad, S. A. Monadjemi, M. Soltanaghaei","doi":"10.29252/MJEE.14.3.14","DOIUrl":null,"url":null,"abstract":"With the availability of websites and the growth of comments, reviews of user-generated content published on the Internet. Sentiment Classification is one of the most common problems in text mining, which applies to categorize reviews into positive and negative classes. Pre-processing has an important role when these textual contexts employed by machine learning techniques. Without efficient pre-processing methods, unreliable results will achieve. This research probes to investigate the performance of pre-processing for the Sentiment Classification problem on three popular datasets. We suggest a high-performance framework to enhance classification performance.  First, features of user's opinions are extracted based on three methods: (1) Backward Feature Selection; (2) High Correlation Filter; and (3) Low Variance Filter. Second, the error rate of the primary classification for each method calculated through the perceptron. Finally, the best method selected through the fuzzy analytic hierarchy process. This framework is beneficial for companies to observe people's comments about their brands and for many other applications. The current authors have provided further evidence to confirm the superiority of the proposed framework. The obtained results indicate that on average this proposed framework outperformed its counterparts. This framework yields 90.63 precision, 90.89 accuracy, 91.27 recall, and 91.05% f-measure.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"14 1","pages":"111-123"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majlesi Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/MJEE.14.3.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

Abstract

With the availability of websites and the growth of comments, reviews of user-generated content published on the Internet. Sentiment Classification is one of the most common problems in text mining, which applies to categorize reviews into positive and negative classes. Pre-processing has an important role when these textual contexts employed by machine learning techniques. Without efficient pre-processing methods, unreliable results will achieve. This research probes to investigate the performance of pre-processing for the Sentiment Classification problem on three popular datasets. We suggest a high-performance framework to enhance classification performance.  First, features of user's opinions are extracted based on three methods: (1) Backward Feature Selection; (2) High Correlation Filter; and (3) Low Variance Filter. Second, the error rate of the primary classification for each method calculated through the perceptron. Finally, the best method selected through the fuzzy analytic hierarchy process. This framework is beneficial for companies to observe people's comments about their brands and for many other applications. The current authors have provided further evidence to confirm the superiority of the proposed framework. The obtained results indicate that on average this proposed framework outperformed its counterparts. This framework yields 90.63 precision, 90.89 accuracy, 91.27 recall, and 91.05% f-measure.
文本分类中的模糊层次分析法框架
随着网站的可用性和评论的增长,在互联网上发布的用户生成内容的评论。情感分类是文本挖掘中最常见的问题之一,它适用于将评论分为正面和负面两类。当机器学习技术使用这些文本上下文时,预处理具有重要作用。如果没有有效的预处理方法,将获得不可靠的结果。本研究试图在三个流行的数据集上研究情绪分类问题的预处理性能。我们建议使用一个高性能的框架来提高分类性能。首先,基于三种方法提取用户意见的特征:(1)向后特征选择;(2) 高相关滤波器;以及(3)低方差滤波器。其次,通过感知器计算出每种方法的初级分类的错误率。最后,通过模糊层次分析法选出最佳方法。该框架有利于公司观察人们对其品牌的评论,也有利于许多其他应用。目前的作者提供了进一步的证据来证实所提出的框架的优越性。所获得的结果表明,平均而言,这一拟议框架的表现优于同行。该框架的准确度为90.63,准确率为90.89,召回率为91.27,f-measure为91.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Majlesi Journal of Electrical Engineering
Majlesi Journal of Electrical Engineering Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
9
期刊介绍: The scope of Majlesi Journal of Electrcial Engineering (MJEE) is ranging from mathematical foundation to practical engineering design in all areas of electrical engineering. The editorial board is international and original unpublished papers are welcome from throughout the world. The journal is devoted primarily to research papers, but very high quality survey and tutorial papers are also published. There is no publication charge for the authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信