Secure integer division with a private divisor

T. Veugen, Mark Abspoel
{"title":"Secure integer division with a private divisor","authors":"T. Veugen, Mark Abspoel","doi":"10.2478/popets-2021-0073","DOIUrl":null,"url":null,"abstract":"Abstract We consider secure integer division within a secret-sharing based secure multi-party computation framework, where the dividend is secret-shared, but the divisor is privately known to a single party. We mention various applications where this situation arises. We give a solution within the passive security model, and extend this to the active model, achieving a complexity linear in the input bit length. We benchmark both solutions using the well-known MP-SPDZ framework in a cloud environment. Our integer division protocol with a private divisor clearly outperforms the secret divisor solution, both in runtime and communication complexity.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2021 1","pages":"339 - 349"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2021-0073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract We consider secure integer division within a secret-sharing based secure multi-party computation framework, where the dividend is secret-shared, but the divisor is privately known to a single party. We mention various applications where this situation arises. We give a solution within the passive security model, and extend this to the active model, achieving a complexity linear in the input bit length. We benchmark both solutions using the well-known MP-SPDZ framework in a cloud environment. Our integer division protocol with a private divisor clearly outperforms the secret divisor solution, both in runtime and communication complexity.
使用私有除数的安全整数除法
摘要我们在一个基于秘密共享的安全多方计算框架内考虑安全整数除法,其中被除数是秘密共享的,但除数对一方来说是私有的。我们提到了出现这种情况的各种应用程序。我们在被动安全模型中给出了一个解决方案,并将其扩展到主动模型,实现了输入比特长度的复杂性线性。我们在云环境中使用众所周知的MP-SPDZ框架对这两种解决方案进行基准测试。我们的带有专用除数的整数除法协议在运行时和通信复杂性方面都明显优于秘密除数解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信