A Wirebonding Instrument for Insulated and Coaxial Wires

Q4 Engineering
W. MeinholdMitchell, Caprice Gray, Jeffery B. Delisio, Ernest Kim, Christian Wells, Daniela A. Torres, P. Lewis, David Hagerstrom
{"title":"A Wirebonding Instrument for Insulated and Coaxial Wires","authors":"W. MeinholdMitchell, Caprice Gray, Jeffery B. Delisio, Ernest Kim, Christian Wells, Daniela A. Torres, P. Lewis, David Hagerstrom","doi":"10.4071/2380-4505-2019.1.000503","DOIUrl":null,"url":null,"abstract":"A tool has been developed that supports a novel microelectronic integration paradigm whereby interconnects between components are directly established by means of microcoax wire bonding. A near-term use case of the tool is to facilitate rapid prototyping of high-bandwidth systems. When further matured, it will be able to rapidly integrate complex systems with hundreds or thousands of interconnects with minimal design time. Automatic stripping and bonding of coax wires having overall diameters between 50 and 100 μm present an array of process challenges that pose interesting demands on the material system of the wire and the bonding tool. This study reviewed a microcoax bonding system that is currently in development at Draper which is able to strip, feed, and bond microcoax wire. The system utilizes a combination of electric flame-off and thermal reflow to strip outer metal shielding and polymer dielectric layers, respectively. It leverages a rotary wire feed mechanism to precisely control wire position so that predetermined wire lengths can be established. Progress in the design of the wires, tooling, and software control architecture is reviewed.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/2380-4505-2019.1.000503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A tool has been developed that supports a novel microelectronic integration paradigm whereby interconnects between components are directly established by means of microcoax wire bonding. A near-term use case of the tool is to facilitate rapid prototyping of high-bandwidth systems. When further matured, it will be able to rapidly integrate complex systems with hundreds or thousands of interconnects with minimal design time. Automatic stripping and bonding of coax wires having overall diameters between 50 and 100 μm present an array of process challenges that pose interesting demands on the material system of the wire and the bonding tool. This study reviewed a microcoax bonding system that is currently in development at Draper which is able to strip, feed, and bond microcoax wire. The system utilizes a combination of electric flame-off and thermal reflow to strip outer metal shielding and polymer dielectric layers, respectively. It leverages a rotary wire feed mechanism to precisely control wire position so that predetermined wire lengths can be established. Progress in the design of the wires, tooling, and software control architecture is reviewed.
一种用于绝缘和同轴线的引线键合仪
已经开发出一种支持新型微电子集成范例的工具,通过微同轴线键合直接建立组件之间的互连。该工具的近期用例是促进高带宽系统的快速原型。当进一步成熟时,它将能够以最小的设计时间快速集成具有数百或数千个互连的复杂系统。总直径在50到100 μm之间的同轴电缆的自动剥离和粘接带来了一系列工艺挑战,对电缆的材料系统和粘接工具提出了有趣的要求。本研究回顾了Draper目前正在开发的一种微同轴键合系统,该系统能够剥离、馈送和键合微同轴导线。该系统采用电熄灭和热回流相结合的方式,分别剥离外部金属屏蔽层和聚合物介电层。它利用旋转送丝机构来精确控制线的位置,从而可以确定预定的线长度。回顾了电线、工具和软件控制体系结构的设计进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Microelectronics and Electronic Packaging
Journal of Microelectronics and Electronic Packaging Engineering-Electrical and Electronic Engineering
CiteScore
1.30
自引率
0.00%
发文量
5
期刊介绍: The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信